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Chapter 1

Algebra Review

This College Algebra text will cover a combination of classical algebra and ana-
lytic geometry, with an introduction to the transcendental exponential and log-
arithmic functions. There are also chapters devoted to the theory of functions,
combinatorics and trigonometry. If mathematics is the language of science, then
algebra is the grammar of that language. Like grammar, algebra provides a struc-
ture to mathematical notation, in addition to its uses in problem solving and its
ability to change the appearance of an expression without changing the value.

1.1 Algebraic Simplification

When algebraic techniques are presented as skills in isolation, they are much sim-
pler to understand and practice. However the problem solving process in any
context involves deciding which skills to use when. Most College Algebra stu-
dents will have practiced problems in the form:

(x+ 7)(x− 2) =?

or

(2x+ 1)2 =?

The problems in this section deal with a combination of these processes which
are often encountered as parts of more complex problems.

9



10 CHAPTER 1. ALGEBRA REVIEW

Examples

Simplify:

3(x− 1)(2x+ 5)− (x+ 4)2

In this example, the simplification involves two expressions: 3(x− 1)(2x+ 5) and
(x + 4)2. The (x + 4)2 is preceded by a negative (or subtraction) sign. This text-
book will often treat −x and +(−x) as equivalent statements, since subtraction is
defined as the addition of a negative.

We will simplify each expression separately and then look to combine like terms.

3(x− 1)(2x+ 5)− (x+ 4)2 = 3(2x2 + 3x− 5)− (x2 + 8x+ 16)

Notice that the results of both multiplications remain inside of parentheses. This
is because each one has something that must be distributed.

In the case of (2x2 + 3x − 5), there is a 3 which must be distributed, resulting in
6x2 + 9x − 15. In the case of (x2 + 8x + 16) there is a negative sign or −1 which
must be distributed, resulting in −x2− 8x− 16. It is important in these situations
that the negative sign be distributed to all terms in the parentheses.

So:

3(x− 1)(2x+ 5)− (x+ 4)2 = 3(2x2 + 3x− 5)− (x2 + 8x+ 16)

= 6x2 + 9x− 15− x2 − 8x− 16

= 5x2 + x− 31

Simplify:

2(x+ 3)2 − 4(3x− 1)(x+ 2)

This example shows some of the same processes as the previous example. There
are again two expressions that must be simplified, each of which has a coefficient
that must be distributed. It is often helpful to wait until after multiplying the
binomials before distributing the coefficient. However, as is often true in math-
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ematics, there are several different approaches that may be taken in simplifying
this problem.

If someone prefers to first distribute the coefficient before multiplying the bino-
mials, then the coefficient must only be distributed to ONE of the binomials, but
not both. For example, in multiplying 3∗2∗5 = 30, we can first multiply 2∗5 = 10
and then 3 ∗ 10 = 30. Each factor is multiplied only once.

In the example above we can proceed as we did with the previous example:

2(x+ 3)2 − 4(3x− 1)(x+ 2) = 2(x2 + 6x+ 9)− 4(3x2 + 5x− 2)

= 2x2 + 12x+ 18− 12x2 − 20x+ 8

= −10x2 − 8x+ 26

Or, we can choose to distribute the 4 first:

2(x+ 3)2 − 4(3x− 1)(x+ 2) = 2(x2 + 6x+ 9)− (12x− 4)(x+ 2)

= 2x2 + 12x+ 18− (12x2 + 20x− 8)

= 2x2 + 12x+ 18− 12x2 − 20x+ 8

= −10x2 − 8x+ 26

Or, we can distribute the 4 as a negative. If we do this, then the sign in front of
the parentheses will be positive:

2(x+ 3)2 − 4(3x− 1)(x+ 2) = 2(x2 + 6x+ 9) + (−12x+ 4)(x+ 2)

= 2x2 + 12x+ 18 + (−12x2 − 20x+ 8)

= −10x2 − 8x+ 26

Distributing the 2 in front of the squared binomial must also be handled carefully
if you choose to do this. If you distribute the 2 before squaring the (x + 3), then
the 2 will be squared as well. If you choose to distribute the 2, the (x + 3)2 must
be written out as (x+ 3)(x+ 3):
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2(x+ 3)2 − 4(3x− 1)(x+ 2) = 2(x+ 3)(x+ 3)− 4(3x− 1)(x+ 2)

= (2x+ 6)(x+ 3)− 4(3x2 + 5x− 2)

= 2x2 + 12x+ 18− 12x2 − 20x+ 8

= −10x2 − 8x+ 26

Most examples in this text will distribute the coefficients as the last step before
combining like terms for a final answer.

Simplify:

3x[5− (2x+ 7)] + (3x− 2)2 − (x− 5)(x+ 4)

This example has three expressions that should be simplified separately before
combining like terms. In the first expression 3x[5− (2x+ 7)], we should simplify
inside the brackets before distributing the 3x.

3x[5− (2x+ 7)] + (3x− 2)2 − (x− 5)(x+ 4)

= 3x[5− 2x− 7] + (3x− 2)2 − (x− 5)(x+ 4)

= 3x[−2x− 2] + (3x− 2)(3x− 2)− (x2 − x− 20)

= −6x2 − 6x+ (9x2 − 12x+ 4)− x2 + x+ 20

= −6x2 − 6x+ 9x2 − 12x+ 4− x2 + x+ 20

= 2x2 − 17x+ 24
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Exercises 1.1

Simplify each expression.

1) (x− 2)[2x− 2(3 + x)]− (x+ 5)2

2) 3x2 − [7x− 2(2x− 1)(3− x)]

3) (a+ b)2 − (a+ b)(a− b)− [a(2b− 2)− (b2 − 2a)]

4) 5x− 3(x− 2)(x+ 7) + 3(x− 2)2

5) (m+ 3)(m− 1)− (m− 2)2 + 4

6) (a− 1)(a− 2)− (a− 2)(a− 3) + (a− 3)(a− 4)

7) 2a2 − 3(a+ 1)(a− 2)− [7− (a− 1)]2

8) 2(x− 5)(3x+ 1)− (2x− 1)2

9) 6y + (3y + 1)(y + 2)− (y − 3)(y − 8)

10) 6x− 4(x+ 10)(x− 1) + (x+ 1)2
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1.2 Factoring

This section will review three of the most common types of factoring - factoring
out a Greatest Common Factor, Trinomial Factoring and factoring a Difference of
Squares.

Greatest Common Factor

Factoring out a greatest common factor essentially undoes the distributive multi-
plication that often occurs in mathematical expressions. This factor may be mono-
mial or polynomial, but in these examples, we will explore monomial common
factors.

In multiplying 3xy2(5x−2y) = 15x2y2−6xy3 the monomial term 3xy2 is multiplied
or distributed to both terms inside the parentheses. The process of factorization
undoes this multiplication.

Example:

Factor 7x2 + 14x

This expression has two terms. The coefficients share a common factor of 7 and
the only variable involved in this expression is x. The highest power of the vari-
able that is shared by both terms is x1, so this is the power of x that can be factored
out of both terms. The greatest common factor is 7x.

7x2 + 14x = 7x(x+ 2)

It isn’t necessary to find the greatest common factor right away. In more compli-
cated problems, the factoring can be accomplished in pieces, similar in fashion to
reducing fractions.



1.2. FACTORING 15

Example:

Factor 42x2y6 + 98xy3 − 210x3y2

This expression has three terms. It’s not immediately clear what the greatest
common factor of the coefficients is, but they’re all even numbers, so we could at
least divide them all by 2. The 98xy3 term has an x1, which means that this is the
hightest power of x that we could factor out of all the terms. The 210x3y2 has a
y2, which is the highest power of y that can be factored out of all the terms. So we
can at least proceed with these factors:

42x2y6 + 98xy3 − 210x3y2 = 2xy2 ∗ 21xy4 + 2xy2 ∗ 49y − 2xy2 ∗ 105x2

= 2xy2(21xy4 + 49y − 105x2)

Now, we didn’t try very hard to find the greatest common factor in the beginning
of this problem, so it’s important that we continue to question whether or not
there are any remaining common factors. The 21 and 49 clearly share a common
factor of 7, so it would make sense to see if 105 is divisible by 7 as well. If we
divide 105 by 7, we see that 105 = 7*15. So, we can also factor out a common
factor of 7 from the remaining terms in the parentheses.

2xy2(21xy4 + 49y − 105x2) = 2xy2(7 ∗ 3xy4 + 7 ∗ 7y − 7 ∗ 15x2)

= 7 ∗ 2xy2(3xy4 + 7y − 15x2)

= 14xy2(3xy4 + 7y − 15x2)
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Trinomial Factoring (a = 1)

Trinomial factoring undoes the multiplication of two binomials, and it comes in
two flavors - simple and complex. The simplest form of trinomial factoring in-
volves a trinomial expression in the form ax2 + bx+ c in which the value of a is 1.
This makes the task of factorization simpler than if the value of a is not 1.

Example

Factor x2 + 7x+ 10

In this example, the value of a is 1, which makes this type of trinomial factoring
a little less difficult that it would otherwise be. Whether or not the value of a is 1,
the fundamental issue that governs this type of factoring is the + or − sign of the
constant term. In this problem, the constant term is positive. That means that we
need to find factors of 10 that add up to 7. This is relatively straightforward:

x2 + 7x+ 10 = (x+ 2)(x+ 5)

A companion problem to this one is x2 − 7x + 10. Notice that, in this case, the
sign of the constant term is still positive, which means that we still need factors
of 10 that add up to 7. This means we still need to use 2 and 5. However, in
this case, instead of the +10 being produced from a multiplication of (+2)(+5),
it is the result of multiplying (−2)(−5). This is what makes the 7 in the second
example negative:

x2 − 7x+ 10 = (x− 2)(x− 5)

Example

Factor x2 + 3x− 10

In this case, the sign of the constant term is negative. That means that we need to
find factors of 10 that have a difference of 3. This is still 5 and 2.
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x2 + 3x− 10 = (x− 2)(x+ 5)

The multiplication of the (−2) and the (+5) produce the (−10) and the fact that
the 2 and 5 have opposite signs creates the difference that gives us (+3). A com-
panion problem to this one is x2 − 3x − 10. In this case, the sign of the constant
term is still negative, which means that we still need factors of 10 that have a
difference of 3. This means we still need to use 2 and 5. However in this case,
instead of the (+3) as the coefficient of the middle term, we’ll need a (−3). To do
this we simply reverse the signs of the 2 and 5 from the previous problem:

x2 − 3x− 10 = (x+ 2)(x− 5)

Now the (+2)(−5) gives us (−10), but the +2x − 5x gives us (−3x) instead of
(+3x).

Example

Factor x2 + 11x− 42

In this problem, the sign of the constant term is negative. That means that we
need factors of 42 that have a difference of 11. A systematic exploration of all the
factor pairs of 42 can help us to find the correct pair:

1 42

2 21

3 14

6 7
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Here, we can see that the factors 3 and 14 have a difference of 11. This means that
we will use these factors in our answer: (x 3)(x 14). In determining how
to place the + and − signs in the parentheses, we can refer back to the original
problem: x2 + 11x−42. If we want a difference of (+11x), then we’ll need to have
a (+14) and a (−3):

x2 + 11x− 42 = (x− 3)(x+ 14)

Example

Factor x2 + 28x+ 96

In this problem, the sign of the constant term is positive. That means that we
need factors of 96 that add up to 28. A systematic exploration of all the factor
pairs of 96 can help us to find the correct pair:

1 96

2 48

3 32

4 24

6 16

8 12

Here, we can see that the factors 4 and 24 add up to 28. This means that we will
use these factors in our answer: (x 4)(x 24). In determining how to place
the + and − signs in the parentheses, we can refer back to the original problem:
x2 + 28x + 96. If we want 4 and 24 to add up to (+28), then they should both be
positive:

x2 + 28x+ 96 = (x+ 4)(x+ 24)
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In building the charts of factor pairs in the previous two problems, nothing more
difficult than dividing the constant term by the numbers 1, 2, 3, 4, 5, 6, ... and so
on can help you to find the full list of factor pairs. If you don’t get a whole num-
ber when dividing - for instance 96 ÷ 5 = 19.2, then this number is not included
in the list of factor pairs.

Trinomial Factoring (a 6= 1)

If the value of a is not 1, this means that, if the trinomial is factorable, at least one
of its binomial factors also has a coefficient other than 1. For instance:

(2x+ 7)(x− 3) = 2x2 + 1x− 21

If we were to try undo this multiplication through the process of trinomial fac-
toring, we should look to the sign of the constant term. In this example, the sign
is negative. This still means that we will need to find factor pairs that produce
a difference of (+1x) as the middle term. However, in this scenario, it is not just
the factors of 21 that are involved in producing the (+1x), but the combination
of the factors of 21 and the factors of the leading coefficient 2. The middle term
(+1x) comes from the multiplication of the (2x)(−3) and the multiplication of
(+7)(+1x):

(2x+ 7)(x− 3)

(2x+ 7)(x− 3) = 2x2 − 6x+ 7x− 21

= 2x2 + x− 21

In trying to factor a trinomial like 2x2 + x − 21, we need to take this into consid-
eration. For example, if we were to factor 3x2 − 10x+ 8, we should first still look
to the sign of the constant term, which, in this case, is positive. That means we
want factor pairs that will add up to 10. But we have to take into consideration
the interaction of the factors of the 3 with the factors of the 8. The 3 is a prime
number, which means that we don’t have a choice - it can only be split up into
3 ∗ 1, so we can start:

Factor 3x2 + 10x+ 8
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(3x ?)(x ?)

Our options for filling in the question marks will come from the factors of 8, either
8 ∗ 1 or 4 ∗ 2. The process is by trial and error:

(3x 8)(x 1) (3x 1)(x 8)

3x+ 8x = 11x 24x+ 1x = 25x

(3x 4)(x 2) (3x 2)(x 4)

6x+ 4x = 10x 12x+ 2x = 14x

We can see that the choice above:

(3x 4)(x 2)

gives us the required 10x as the middle term. Since the original problem was
3x2 + 10x+ 8 we’ll want to fill in the signs as both positive:

3x2 + 10x+ 8 = (3x+ 4)(x+ 2)

A second method for handling this type of factoring depends on how the factors
of the leading coefficient and constant term interact with each other to produce
the middle term. In this process, given the problem 3x2 + 10 + 8, we can multiply
the first and last coefficient and then look at the factor pairs of the product:

3 ∗ 8 = 24
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1 24

2 12

3 8

4 6

We can see that the factor pair of 24 that adds up to 10 is 6 ∗ 4. We proceed by
splitting the 10x into 6x + 4x and then factor by grouping. If you are uncom-
fortable with factoring by grouping, then this is probably not a good method to
try. However, if you are comfortable with factoring by grouping, the rest of the
process is relatively straightforward:

3x2 + 10x+ 8 = 3x2 + 6x+ 4x+ 8

We then factor a common factor from the first two terms and the last two terms
separately, and then factor out the common binomial factor of (x+ 2):

3x2 + 10x+ 8 = 3x2 + 6x+ 4x+ 8

= 3x(x+ 2) + 4(x+ 2)

= (x+ 2)(3x+ 4)

Example

Factor 7x2 − 5x− 18

In this example, the sign of the constant term is negative, which means that we’ll
need factor pairs that produce a difference of 5. The leading coefficient is 7, which
is prime, so, again, the only way to split up the 7 is 7 ∗ 1.

(7x ?)(x ?)

The options for filling in the question marks come from the factors of 18, for
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which there are three possibilities: 18 ∗ 1, 9 ∗ 2, or 6 ∗ 3. We’ll try each of these
factor pairs in place of the question marks:

(7x 18)(x 1) (7x 1)(x 18)

18x− 7x = 11x 126x− 1x = 125x

(7x 9)(x 2) (7x 2)(x 9)

14x− 9x = 5x 63x− 2x = 61x

(7x 6)(x 3) (7x 3)(x 6)

21x− 6x = 15x 42x− 3x = 39x

The choice above:

(7x 9)(x 2)

gives us the required 5x as the middle term. Since we’re looking for a (−5x), we’ll
make the 14 negative and the 9 positive: −14x+ 9x = −5x.

7x2 − 5x− 18 = (7x+ 9)(x− 2)
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If we want to try the other method for factoring 7x2−5x−18, we would multiply
7 ∗ 18 = 126, and then work to find factor pairs of 126 that have a difference of 5:

1 126

2 63

3 42

6 21

7 18

9 14

Here, the last factor pair, 9 ∗ 14, has a difference of 5. So then we proceed to factor
by grouping:

7x2 − 5x− 18 = 7x2 + 9x− 14x− 18

= x(7x+ 9)− 2(7x+ 9)

= (7x+ 9)(x− 2)

Notice that when the −2 was factored out from the last two terms −14x− 18, we
ended up with −2(7x+ 9), because (−2) ∗ (+9) = −18. This is also important be-
cause in order to factor out the common binomial factor of (7x+ 9), this binomial
must be exactly the same in both terms.
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Difference of Squares

Factoring a difference of squares is actually a special form of trinomial factoring.
If we consider a trinomial of the form ax2 + bx+ c, where c is a perfect square and
negative, we will find something interesting about the possible values of b that
make the trinomial factorable.

Example

Consider x2 + bx− 36

For this expression to be factorable, the middle coefficient b would need to be
equal to the difference of any of the factor pairs of 36. If we look at the possible
factor pairs, we see the following:

1 36

2 18

3 12

4 9

6 6

This means that the possible values for b that would make this expression fac-
torable are:

36− 1 = 35→ x2 + 35x− 36 = (x+ 36)(x− 1)

18− 2 = 16→ x2 + 16x− 36 = (x+ 18)(x− 2)

12− 3 = 9→ x2 + 9x− 36 = (x+ 12)(x− 3)

9− 4 = 5→ x2 + 5x− 36 = (x+ 9)(x− 4)

6− 6 = 0→ x2 + 0x− 36 = x2 − 36 = (x+ 6)(x− 6)
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As we see, factoring x2− 36 means that the factors of the perfect square 36 = 6 ∗ 6
will cancel each other out leaving 0x in the middle. If there is a perfect square as
the leading coefficient, then this number should be square rooted as well:

16x2 − 25 = (4x+ 5)(4x− 5)

In the example above, the +20x and −20x as the middle terms cancel each other
out leaving just 16x2 − 25.

These three types of factoring can also be combined with each other as we see in
the following examples.

Example

Factor 2x2 − 50

This is not a trinomial because it doesn’t have three terms. It is also not a dif-
ference of squares because 2 and 50 are not perfect squares. However, there is a
common factor of 2 which we can factor out:

2x2 − 50 = 2(x2 − 25)

The expression inside the parentheses is a difference of squares and should be
factored:

2x2 − 50 = 2(x2 − 25) = 2(x+ 5)(x− 5)

Example

Factor 24− 2x− x2

Here the sign of the x2 term is negative. For this problem we can factor out
a −1 and proceed as we did with the previous problems in which the leading
coefficient was positive or we can factor it as it is:

24− 2x− x2 = −(x2 + 2x− 24) = −(x+ 6)(x− 4)



26 CHAPTER 1. ALGEBRA REVIEW

If we want to factor it as it is, we should be aware that the constant term is positive
and the quadratic term is negative, which means that we will want the factors of
24 to have a difference of 2.

24− 2x− x2 = (6 + x)(4− x)

Example

Factor 6x2 + 12x+ 6

First, we notice that this expression has a common factor of 6. If we factor out the
6, then we should be left with an easier problem:

6x2 + 12x+ 6 = 6(x2 + 2x+ 1) = 6(x+ 1)(x+ 1) = 6(x+ 1)2
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Exercises 1.2

Factor each expression completely.

1) 8a2b3 + 24a2b2 2) 19x2y − 38x2y3

3) 13t8 + 26t4 − 39t2 4) 5y5 + 25y4 − 20y3

5) 45m4n5 + 36mn6 + 81m2n3 6) 125x3y5 + 60x4y4 − 85x5y2

Factor each trinomial into the product of two binomials.

7) a2 + 3a+ 2 8) y2 − 8y − 48 9) x2 − 6x− 27

10) t2 − 13t+ 42 11) m2 + 3m− 54 12) x2 + 11x+ 24

Factor completely. Remember to look first for a common factor. If the polynomial
is prime, state this.

13) a2 − 9 14) y2 − 121 15) −49 + k2

16) −64 + t2 17) 6x2 − 54 18) 25y2 − 4

19) 200− 2a2 20) 3m2 − 12 21) 98− 8k2

22) −80w2 + 45 23) 5y2 − 80 24) −4a2 + 64
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25) 8y2 − 98 26) 24a2 − 54 27) 36k − 49k3

28) 16y − 81y3

Factor each trinomial completely. Remember to look first for a common factor. If
the polynomial is prime, state this.

29) 3y2 − 15y + 16 30) 8a2 − 14a+ 3 31) 9x2 − 18x+ 8

32) 6a2 − 17a+ 12 33) 2x2 + 7x+ 6 34) 2m2 + 13m− 18

35) 20y2 + 22y + 6 36) 36x2 + 81x+ 45 37) 24a2 − 42a+ 9

38) 48x2 − 74x− 10

Factor each expression completely.

39) 30 + 7y − y2 40) 45 + 4a− a2 41) 24− 10x− x2

42) 36− 9x− x2 43) 84− 8x− x2 44) 72− 6a− a2

45) 6y2 + 24y + 15 46) 10y2 − 75y + 35 47) 20ax2 − 36ax− 8a
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1.3 Quadratic Equations

Quadratic equations are equations of the second degree. The solution of quadratic
equations has a long history in mathematics going back several thousand years
to the geometric solutions produced by the Babylonian culture. The Indian math-
ematician Brahmagupta used ”rhetorical algebra” (algebra written out in words)
in the 7th century to produce solutions to quadratic equations and Arab mathe-
maticians of 9th and 10th centuries followed simlar methods. Leonardo of Pisa
(also known as Fibonacci) included information on the Arab approach to solving
quadratic equations in his book Liber Abaci, published in 1202.

The quadratic formula is generally used to solve quadratic equations in standard
form: ax2 + bx+ c = 0. The solutions for this are:

x =
−b±

√
b2 − 4ac

2a

Now, the question is - why does this formula give solutions to the standard
quadratic equation? We can proceed as we normally do in solving linear equa-
tions - that is, by getting the x by itself. The only problem here is that instead of
just x, there are also terms involving x2. This is where the process of completing
the square comes in handy.

We can begin with the quadratic equation in standard form:

ax2 + bx+ c = 0

Just as it is easier to factor a quadratic trinomial if the leading coefficient is 1, this
process of completing the square is also easier if the leading coefficient is 1. So,
next we will divide through on both sides of this equation by a.

ax2 + bx+ c

a
=

0

a

ax2

a
+
bx

a
+
c

a
=

0

a

x2 + b
a
x+ c

a
= 0
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Then, we will move the
c

a
to the other side of the equation to clear out some room

for completing the square:

x2 +
b

a
x+

c

a
= 0

− c
a

= − c
a

x2 +
b

a
x = − c

a

Now we need to complete the square. If you are already familiar with this pro-
cess, you may wish to skip the following explanation.

If we look at what happens when we square a binomial like (x+3)2, we will begin
to notice a pattern.

(x+ 3)2 = (x+ 3)(x+ 3) = x2 + 6x+ 9

(x+ 4)2 = (x+ 4)(x+ 4) = x2 + 8x+ 16

(x+ 5)2 = (x+ 5)(x+ 5) = x2 + 10x+ 25

(x+ 6)2 = (x+ 6)(x+ 6) = x2 + 12x+ 36

Our goal in the derivation of the Quadratic Formula is to rewrite the expression
x2 + b

a
x as a perfect square in the form (x+ )2. The reason that we want to do

this is that writing an expression as a binomial squared eliminates the problem of
having both an x and an x2, which was preventing us from getting the x by itself
in the standard quadratic equation.

If we can figure out what should take the place of the blanks in the statement:

x2 + b
a
x+ = (x+ )2

then we will be well on our way to deriving the quadratic formula.
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If we re-examine the sample perfect binomial squares from the previous page, we
note a useful pattern. This is that the blank in the parentheses (x+ )2 is filled
by a number that is one-half the value of the linear coefficient - or the coefficient
of the x1 term. Notice that in x2 + 6x+ 9 = (x+ 3)2, 3 is half of 6, in x2 + 8x+ 16 =
(x+ 4)2, the 4 is half of 8, and so on. If we want to write x2 + b

a
x+ as a perfect

square in the form (x+ )2, the blank in the parentheses should be filled by:

1

2
∗ b
a

=
b

2a

Now, it’s not true that x2 +
b

a
x+ =

(
x+

b

2a

)2

We’re missing the constant term on the left. However, if we return to our perfect
square examples, we can see that the constant term is always the square of the
term inside inside the parentheses. So, we can restate our problem now as:

x2 +
b

a
x+

(
b

2a

)2

=

(
x+

b

2a

)2

x2 +
b

a
x+

b2

4a2
=

(
x+

b

2a

)2

So, if we return to our originial problem, we were saying that:

x2 +
b

a
x+

c

a
= 0

− c
a

= − c
a

x2 +
b

a
x = − c

a
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We can add
b2

4a2
to both sides of this equation and then restate the left hand side

as a perfect square of a binomial:

x2 +
b

a
x = − c

a

+
b2

4a2
= +

b2

4a2

x2 +
b

a
x+

b2

4a2
= − c

a
+

b2

4a2

(
x+

b

2a

)2

= − c
a

+
b2

4a2

The last tricky bit of this derivation is adding the two fractions on the right hand
side. The common denominator for these fractions is 4a2, so we’ll need to multi-

ply the − c
a

by
4a

4a
to get −4ac

4a2
. Then the right hand side will be

b2 − 4ac

4a2
:

(
x+

b

2a

)2

=
b2 − 4ac

4a2

Then, we can take the square root of both sides and get the x by itself:

√(
x+

b

2a

)2

= ±
√
b2 − 4ac

4a2

x+
b

2a
=
±
√
b2 − 4ac√

4a2

x+
b

2a
=
±
√
b2 − 4ac

2a
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Subtracting
b

2a
from both sides is easy since we already have a common denom-

inator:

x+
b

2a
=
±
√
b2 − 4ac

2a

− b

2a
= − b

2a

x =
−b±

√
b2 − 4ac

2a

At the College Algebra level, it is often useful to program the quadratic formula
onto a graphing calculator both for easy use and also to learn a little bit about
programming. The following program is a simple example of this for the TI-
84 series of graphing calculators. Graphing calculators also often have built-in
polynomial solver feature that can be used to solve quadratics.

Press the ”prgm” key in the top middle of the calculator keypad. This will bring
up a screen that shows EXEC EDIT NEW across the top. Arrow over across
the top to ”NEW,” and then select 1: Create New.

This will bring up a screen asking you to name the program. You should see
PROGRAM and then underneath it, ”Name=”. The alpha lock is on automat-
ically, so any key you press will type the letter associated with it. Name your
program and press ENTER. You should see PROGRAM: Name, with whatever
name you’ve chosen for your program. Underneath this you will se a colon :.
This is where you will enter the commands for the program.

First we need to enter the values for A, B and C from the quadratic equation into
the calculator. To do this, press the ”prgm” key again. Across the top of the screen
you should see CTL I/O COLOR EXEC.

Arrow over to I/O. This is the ”input/output” menu. Choose number 2:Prompt.
This will return you to the program screen where you will see :Prompt under the
name of the program. After :Prompt, type A, B, C. You’ll need to use the ”alpha”
key to access the letters and the comma is right above the 7 key.
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PROGRAM: Name (whatever name you’ve chosen should show here)
:Prompt A, B, C

On the next line of the program, we will take the values of A, B and C and use
them to calculate the values of the roots of the equation. Type in the following:

PROGRAM: Name
:Prompt A, B, C
:(−B +

√
(B2 − 4AC))/(2A)→ R

:(−B −
√

(B2 − 4AC))/(2A)→ S

In typing these two lines it’s important that when you type−B, you use the nega-
tive key next to the decimal point, rather than the subtraction key. The calculator
is very picky about this. When you’re typing the B2−4AC, you’ll need to use the
subtraction key on the far right of the keypad.

Also notice the double parentheses - one set for the numerator of the fraction
and one set for the square root. If you don’t type this in correctly it will produce
wrong answers. The arrow in the formula stores the values of the answer in the
variables R and S, and the arrow is produced by the ”sto→” key just above the
ON button in the lower left of the keyboard.

Now that we’ve given the calculator the values for A, B and C and then had
the calculator find the roots of the eqatiuon, we need to display the answers. If
you press the prgm key and arrow over to the I/O menu again, you can choose
3:Disp. This will Display the answers that we’ve stored as R and S.

PROGRAM: Name
:Prompt A, B, C
:(−B +

√
B2 − 4AC))/(2A)→ R

:(−B −
√
B2 − 4AC))/(2A)→ S

:Disp R,S

Now we can test the program with some simple equations. To run the program,
press the program key and choose the program you’ve created either by selecting
it and pressing enter, or by pressing the number for the program in the list. This
should bring you back to the calculation screen, where you can run the program
by pressing enter. The calculator should then ask you for the values of A, B and
C.



1.3. QUADRATIC EQUATIONS 35

Solve for x: 2x2 − x− 1 = 0

In this example the values for A, B and C are:
A = 2
B = −1
C = −1

Again, it’s important that you use the negative sign key next to the decimal point
for the values of any negative coefficients and not the subtraction key. The calcu-
lator should return values of 1 and −0.5 as the solutions.

Solve for x: x2 + x+ 1 = 0

In this example the values for A, B and C are:
A = 1
B = 1
C = 1

The calculator should return values of −0.5± 0.8660254038i as solutions.

If you get an error message saying ”NONREAL ANSWERS,” you’ll need to ad-
just the calculator setting to allow for complex valued answers. You can do this
by presing the ”mode” key in the top left of the keypad and arrowing down to the
line that reads ”REAL a+bi reˆ(θi).” You can then arrow over to ”a+bi” and
press enter. This will allow the calculator to compute complex valued answers.

Something very important to remember about the quadratic formula is that the
equation must be in standard form in order to identify the values of A, B and C
to use in the formula. For example in the equation:

3x2 − 7 = 2x

it is important to understand that the values of A, B and C come from the stan-
dard form of the equation and not the present form of the equation. There are
several pitfalls to watch out for in this equation. First of all, the 2x is on the op-
posite side of the equation from the other terms. That means that the value of B
IS NOT +2. Also, if we were to move the 2x to the other side to put the equation
in standard form, it is not the order of the terms, but degree of the variable that
determines whether a coefficient is identified as A, B or C.
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In moving the 2x to the other side of the equation, I have seen students put the
term they’re adding to that side as the last term. There is nothing wrong about
this, but if you do that, you must be careful about identifying the values of A, B
and C.

3x2 − 7 = 2x

−2x = −2x

3x2 − 7− 2x = 0

There is nothing wrong about the way the equation above is written depsite the
fact that it is not in ”standard form.” The important thing to remember is that ”A”
is not the coefficient of whichever term is listed first. It is the coefficient of the
quradratic, or x2 term. Likewise, ”B” is not the coefficient of the second term, but
rather the coefficient of the linear, or x1 term. And ”C” is not whichever number
comes last, but rather the value of the constant term. So in the equation above,
however it is written, the value of A is +3, B is −2 and C is −7.
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Exercises 1.3

Solve for x in each equation. Round any irrational values to the nearest 1000th.

1) x2 + 7x = 2 2) 5x2 − 3x = 4

3) 3
4
x2 = 7

8
x+ 1

2
4) 2

3
x2 − 1

3
= 5

9
x

5) 2x2 + (
√

5)x− 3 = 0 6) 3x2 + x−
√

2 = 0

7) 2.58x2 − 3.75x− 2.83 = 0 8) 3.73x2 + 9.74x+ 2.34 = 0

9) 5.3x2 + 7.08x+ 1.02 = 0 10) 3.04x2 + 1.35x+ 1.234 = 0

11) 7x(x+ 2) + 5 = 3x(x+ 1) 12) 5x(x− 1)− 7 = 4x(x− 2)

13) 14(x− 4)− (x+ 2) = (x+ 2)(x− 4)

14) 11(x− 2) + (x− 5) = (x+ 2)(x− 6)
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1.4 Complex Numbers

Our number system can be subdivided in many different ways. The most basic
form of mathematics is counting and almost all human cultures have words to
represent numbers (the Pirahã of South America are a notable exception). Thus
the most basic set of numbers is the set of counting numbers represented by the
double barred N: N = {1, 2, 3, 4, 5, 6, 7, . . . } (we will set aside the debate as to
whether or not zero should be included in this set).

If we try to subtract a larger counting number from a smaller counting number
we find that there are no members in the set of counting numbers to represent
the answer in this situation. This extends the set of natural numbers to the set of
integers: Z = {. . . ,−3,−2,−1, 0, 1, 2, 3, . . . }. The integers are represneted by the
double barred Z, for the German word for numbers - ”zahlen.” In the earliest ap-
pearances of negative numbers in the Chinese and Indian mathematical systems,
negative values were often used to represent debt. Because Greek mathematics
was based on Geometry, they did not use negative numbers.

Moving to multiplication and division, if we question the value of 8÷ 2 = 4 ver-
sus 8 ÷ 3 =?, we once again must expand our conception of numbers to allow
for an answer to the second question 8 ÷ 3 =?. Understanding ratios of whole
numbers or Rational numbers allows solutions to such problems. The set of Ra-
tional numbers is represented by the double barred Q, to represent a quotient:

Q =

{
a

b
: a, b ∈ Z

}
.

The Greek understanding of numbers mostly stopped here. They felt that all
quantities could be represented as the ratio of whole numbers. The length of
the diagonal of a square whose sides are of length 1 produced considerable con-
sternation among the Pythagoreans as a result of this. Using the Pythagorean
Theorem for the diagonal of a square whose sides are of length 1 shows that the
diagonal would be c2 = 12 + 12 = 2, thus c =

√
2. This number cannot be rep-

resented as a ratio of whole numbers. This new class of numbers adds the set
of irrational numbers to the existing set of rational numbers to create the Real
numbers, represented with a double barred R: R.
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This hierarchy of numbers is often represented in the following diagram:

N

Z

Q

R

One of the best ways to conceptualize the Real number system is on the number
line - every point on the number line corresponds to a unique Real number and
every Real number corresponds to a unique position on the Real number line.

-4 -3 -2 -1 0 1 2 3 4

√
2

After the development of the printing press in the 15th century, Fibonacci’s Liber
Abaci was translated into Italian from Latin and read throughout Italy. As a result,
Italy became a thriving center of mathematics until the 17th century, when the
center of European mathematics moved north to France, Germany and England.

Throughout the 1500’s Italian mathematicians such as Girolamo Cardano, Raphael
Bombelli and Niccolo Fontana Tartaglia worked to extend the ideas in Fibonacci’s
book. They produced formulas to solve cubic (x3), and quartic (x4) degree equa-
tions. In solving some of these equations they found that their formulas some-
times produced negative values under a square root. None of the known number
systems could accomodate this possibility. In Cardano’s book on algebra Ars
Magna, he encounters a problem which involves the square root of a negative
number. He says, ”It is clear that this case is impossible. Nevertheless we will
work thus...” and he proceeds to compute a valid complex solution to the prob-
lem. Mathematicians eventually defined the complex unit

√
−1 = i and then
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devised a system in which all complex numbers are a combination of a Real part
(a) and an ”imaginary” part (bi).

The complex numbers are a two dimensional number system represented by the
double barred C: C = {a + bi : a, b ∈ R}, where i is the complex unit defined
as i =

√
−1. Throughout the late 1700’s and early 1800’s mathematicians gradu-

ally moved towards a geometrical interpretation of the two-dimensional complex
numbers. What is today known as the ”Argand diagram” represents the real val-
ued portion of a complex number along a horizontal axis and the multiple of the
complex unit along the vertical axis.

−5 −4 −3 −2 −1 1 2 3 4 5

−5i

−4i

−3i

−2i

−1i

1i

2i

3i

4i

5i

3 + 2i

−1 + 4i

R

Im
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Expressing square roots of negative numbers

Square roots of negative quantities are generally expressed as a multiple of i.

Examples

√
−4 = 2i.

√
−25 = 5i

√
−7 ≈ 2.646i

Adding, subtracting and multiplying with complex numbers

Calculating with complex numbers has many similarities to working with vari-
ables. The real part and imginary part are treated separately for addition and
subtraction, but can be multiplied and divided.

Examples

Compute the following:

(6− 4i) + (−2 + 7i) = 4 + 3i

(−9 + 2i)− (−4 + 6i) = −9 + 2i+ 4− 6i = −5− 4i

3(10 + i) = 30 + 3i

−7i(−5 + 8i) = 35i− 56i2

Now we encounter an interesting fact about complex numbers and, in particular,
the complex unit i. By definition, i =

√
−1. Therefore, if we square i we should

get−1. In the last example problem above, we can replace the i2 with−1 to finish
the problem.
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−7i(−5 + 8i) = 35i− 56i2

= 35i− 56(−1)

= 35i+ 56

= 56 + 35i

Examples

Compute the following:

(8− 5i)(1− 4i) = 8− 32i− 5i+ 20i2

= 8− 37i+ 20(−1)

= 8− 37i− 20

= −12− 37i

(9 + 2i)2 = (9 + 2i)(9 + 2i)

= 81 + 18i+ 18i+ 4i2

= 81 + 36i+ 4(−1)

= 81 + 36i− 4

= 77 + 36i
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Powers of i

The powers of i follow an interesting pattern based on the definition that i2 = −1.

We can see that i1 = i and that i2 = −1, as a result, i3 = i2 ∗ i1 = −1 ∗ i = −i.

In a similar fashion, i4 = i2 ∗ i2 = (−1)(−1) = 1.

This means that i5 = i4 ∗ i = 1 ∗ i = i.

If we put all of this information together we get the following:

i1 = i

i2 = −1

i3 = −i

i4 = 1

i5 = i1 = i

i6 = i2 = −1

i7 = i3 = −i

i8 = i4 = 1

In other words, every power of i is equivalent to either i, −1, −i, or 1. To de-
termine which of these values a power of i is equivalent to, we need to find the
remainder of the exponent when it is divided by 4.

Example

Simplify i38

Since every i4 = 1, then i38 = i36 ∗ i2 = (i4)9 ∗ i2 = 19 ∗ i2 = i2 = −1

Since 38 is 2 more than a multiple of 4, then i38 = i2 = −1.
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Exercises 1.4

−10−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10

−10i
−9i
−8i
−7i
−6i
−5i
−4i
−3i
−2i
−1i

1i

2i

3i

4i

5i

6i

7i

8i

9i

10i

R

Im

Graph the following complex numbers.

1) 2 + 5i 2) 4− 3i 3) −2 + 6i 4) −3− 5i

5) 4 6) −2i 7) 7− i 8) −1 + i

9) −8 + 4i 10) 8 + 3i 11) 7i 12) −5− 9i
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Express each quantity in terms of i. Round irrational values to the nearest 1000th.

13)
√
−36 14)

√
−81 15)

√
−100 16)

√
−49

17)
√
−4 18)

√
−25 19)

√
−2 20)

√
−6

21)
√
−10 22)

√
−31 23)

√
−5 24)

√
−3

Perform the indicated operation and simplify.

25) (6 + 7i) + (5 + 3i) 26) (4− 5i) + (3 + 9i)

27) (9 + 8i)− (1− 2i) 28) (2 + i)− (6− 4i)

29) (7− 4i)− (5− 3i) 30) (8 + i)− (4 + 3i)

31) (7i)(6i) 32) (4i)(−8i)

33) (−2i)(5i) 34) (12i)(3i)

35) (1 + i)(3 + 2i) 36) (1 + 5i)(4 + 3i)

37) (6− 5i)(2− 3i) 38) (8− 3i)(2 + i)

39) (−3 + 4i)(−1− 2i) 40) (−7− i)(3− 5i)

41) (4− 2i)2 42) (−5 + i)2
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43) (3 + i)(3− i) 44) (2 + 6i)(2− 6i)

45) (9− 4i)(9 + 4i) 46) (5 + 2i)(5− 2i)

Express as either i,−1,−i, or 1.

47) i3 48) i7 49) i21 50) i13

51) i29 52) i56 53) i72 54) i35

55) i66 56) i103 57) i16 58) i53

59) i11 60) i42 61) i70 62) i9
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1.5 Quadratic Equations with Complex Roots

In Section 1.3, we considered the solution of quadratic equations that had two
real-valued roots. This was due to the fact that in calculating the roots for each
equation, the portion of the quadratic formula that is square rooted (b2−4ac, often
called the discriminant) was always a positive number.

For example, in using the quadratic formula to calculate the the roots of the equa-
tion x2 − 6x + 3 = 0, the discriminant is positive and we will end up with two
real-valued roots:

x2 − 6x+ 3 = 0

a = 1, b = −6, c = 3

x =
−(−6)±

√
(−6)2 − 4(1)(3)

2 ∗ 1

=
6±
√

36− 12

2

=
6±
√

24

2

≈ 6± 4.899

2

≈ 6 + 4.899

2
≈ 6− 4.899

2

≈ 10.899

2
≈ 1.101

2

≈ 5.449 ≈ 0.551
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When we added and subtracted the square root of 24 to 6 in the quadratic for-
mula, this created two answers, and they were real-valued because the square
root of 24 is real-valued.

Another way to see this is graphically. If we graph y = x2 − 6x+ 3 and find the x
values that make y = 0 , these will appear along the x-axis, and will be the same
values that solve the equation x2 − 6x+ 3 = 0.

2 4 6

−5

5

10

x ≈ 0.551 x ≈ 5.449

If we consider a related, but slightly different equation to start with, these rela-
tionships between the roots, the discriminant and the graphical intersections will
be slightly different.

x2 − 6x+ 9 = 0

a = 1, b = −6, c = 9
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x =
−(−6)±

√
(−6)2 − 4(1)(9)

2 ∗ 1

=
6±
√

36− 36

2

=
6±
√

0

2

=
6

2
= 3

Because the discriminant was 0 in this problem, we only get one real-valued an-
swer.

Graphically, the additional 6 that was added to the original equation to change it
from x2 − 6x+ 3 to x2 − 6x+ 9 shifts every y value on the graph up 6 units.

2 4 6

−5

5

10

15

y = x2 − 6x+ 3

y = x2 − 6x+ 9

x = 3

x ≈ 0.551

x ≈ 5.449
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If we add an additional three units to the constant term of this quadratic equation,
we encounter a third possibility.

x2 − 6x+ 12 = 0

a = 1, b = −6, c = 12

x =
−(−6)±

√
(−6)2 − 4(1)(12)

2 ∗ 1

=
6±
√

36− 48

2

=
6±
√
−12

2

=
6± i

√
12

2

≈ 6± 3.464i

2

=
6

2
± 3.464i

2

≈ 3± 1.732i

Here the discriminant is negative, which leads to two complex-valued answers.
If the equation has real-valued coefficients, the complex roots will always come
in conjugate pairs. Complex conjugates share the same real-valued part and have
opposite signs in their complex-valued (or imaginary) parts: a± bi

Graphically, the previous problem was one step away from not intersecting the
x-axis at all and the additional three units that we added on to get y = x2 −
6x + 12 moves the graph entirely away from the x-axis. Because the roots are
complex-valued, we don’t see any roots on the x-axis. The x-axis contains only
real numbers.
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2 4 6

−5

5

10

15

y = x2 − 6x+ 12

Since the calculator has been programmed for the quadratic formula, the focus of
the problems in this section will be on putting them into standard form.

Example

Solve for x.

(2x+ 1)(x+ 5)− 2x(x+ 7) = 5(x+ 3)2

2x2 + 11x+ 5− 2x2 − 14x = 5(x+ 3)(x+ 3)

−3x+ 5 = 5(x2 + 6x+ 9)

−3x+ 5 = 5x2 + 30x+ 45

0 = 5x2 + 33x+ 40

a = 5, b = 33, c = 40

x = −5,−1.6
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The fact that the roots of this equation were rational numbers means that the
equation could have been solved by factoring.

0 = 5x2 + 33x+ 40

0 = (5x+ 8)(x+ 5)

5x+ 8 = 0 x+ 5 = 0

5x = −8 x = −5

x = −1.6

Example

Solve for x.

(x− 2)2 + 3(4x− 1)(x+ 1) = 7(x+ 1)(x− 1)

x2 − 4x+ 4 + 3(4x2 + 3x− 1) = 7(x2 − 1)

x2 − 4x+ 4 + 12x2 + 9x− 3 = 7x2 − 7

13x2 + 5x+ 1 = 7x2 − 7

6x2 + 5x+ 8 = 0

a = 6, b = 5, c = 8

x ≈ −0.416± 1.077i ≈ − 5
12
± 1.077i
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Exercises 1.5

Solve for x in each equation. Round any irrational values to the nearest 1000th.

1) 3x2 − 3x = 4 2) 4x2 − 2x = 7

3) 5x2 = 3− 7x 4) 3x2 = 21− 14x

5) 6x2 + 1 = 2x 6) 5x− 3x2 = 17

7) (5x− 1)(2x+ 3) = 3x− 20 8) (x+ 4)(3x− 1) = 9x− 5

9) (x− 2)2 = 8x(x− 1) + 10 10) (2x− 3)2 = 2x− 7x2

11) (x+ 5)(x− 6) = (2x− 1)(x− 4) 12) (3x− 4)(x+ 2) = (2x− 5)(x+ 5)
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1.6 Multiplying and Dividing Rational Expressions

Reducing Rational Expressions

A rational expression is simply an algebraic fraction, and our first consideration
will be to reduce these expressions to lowest terms in the same way that we re-

duce numerical fractions to lowest terms. When we reduce
6

15
to

2

5
by canceling

the common factor of three, we are removing a redundant factor of 1 in the form

of
3

3
.

6

15
=

3 ∗ 2

3 ∗ 5
=

3

3
∗ 2

5

= 1 ∗ 2

5

=
2

5

Similarly, if there is a common factor that can be factored out of an algebraic
fraction, this also can be canceled.

21x+ 14

7x+ 7
=

7(3x+ 2)

7(x+ 1)

=
7

7
∗ 3x+ 2

x+ 1

= 1 ∗ 3x+ 2

x+ 1

=
3x+ 2

x+ 1

It’s important to remeber that only common factors can be canceled. This means
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that the first priority in each problem will be to identify the factors of the numer-
ator and denominator to see if they share any common factors.

Example

Reduce to lowest terms.

x2 + 4x− 12

x2 − 4

x2 + 4x− 12

x2 − 4
=

(x+ 6)(x− 2)

(x+ 2)(x− 2)

=
(x+ 6)���

�(x− 2)

(x+ 2)���
�(x− 2)

=
x+ 6

x+ 2

Notice that we can’t cancel the 6 and the 2 in the final answer because they aren’t
factors. The plus signs in the numerator and denominator prevent us from can-
celling the 6 and the 2.

In the previous examples, we saw that cancelling out common factors in the nu-
merator and denominator was actually a process of eliminating a redundant fac-
tor of 1. In the following example, we’ll see a slightly different form of cancelling.

Example

Reduce to lowest terms.

16− x2

x2 + x− 20

16− x2

x2 + x− 20
=

(4 + x)(4− x)

(x+ 5)(x− 4)

In this problem, there are no common factors, but we can do some cancelling. We
can see that (4− x) and (x− 4) are not the same expression. In the first binomial,
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the 4 is positive and the x is negative, whereas in the second binomial, the 4 is

negative and the x is positive. So, we know that
4− x
x− 4

6= 1. However, if we factor

a (−1) out of the numerator, we will see an interesting phenomenon:

4− x
x− 4

=
−1(−4 + x)

x− 4

=
−1(x− 4)

x− 4

= −1 ∗ x− 4

x− 4

= −1 ∗ 1 = −1

Therefore, although
4− x
x− 4

6= 1, we can say that
4− x
x− 4

= −1. This will allow us to

cancel (4− x) and (x− 4) and replace them with (−1).

16− x2

x2 + x− 20
=

(4 + x)(4− x)

(x+ 5)(x− 4)

=
(4 + x)���

�(4− x)

(x+ 5)���
�(x− 4)(−1)

In the final answer, the (−1) can be placed in the denominator or the numerator,
but not both. It can also be placed in front of the fraction.

4 + x

−1(x+ 5)
=
−1(4 + x)

x+ 5

= −4 + x

x+ 5
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Multiplying and Dividing Rational Expressions

In multiplying and dividing rational expressions, it is often easier to identify and
cancel out common factors before multiplying rather than afterwards. Multiply-
ing rational expressions works the same way that multiplying numerical frac-
tions does - multiply straight across the top and straight across the bottom. As a
result, any factor in either numerator of the problem will end up in the numera-
tor of the answer. Likewise, any factor in either denominator of the problem will
end up in the denominator of the answer. Thus, any factor in either numerator
can be cancelled with any factor in either denominator.

Example

Multiply. Express your answer in simplest form.

x2 + 5x+ 6

25− x2
∗ x

2 − 2x− 15

x2 + 6x+ 9

x2 + 5x+ 6

25− x2
∗ x

2 − 2x− 15

x2 + 6x+ 9
=

(x+ 2)(x+ 3)

(5 + x)(5− x)
∗ (x− 5)(x+ 3)

(x+ 3)(x+ 3)

=
(x+ 2)���

�(x+ 3)

(5 + x)���
�(5− x)(−1)

∗�
���(x− 5)���

�(x+ 3)

���
�(x+ 3)���

�(x+ 3)

= −x+ 2

x+ 5

Dividing rational expressions works in much the same way that dividing nu-
merical fractions does. We multiply by the reciprocal. There are several ways to
demonstrate that this is a valid definition for dividing. First, it is important to
understand that the fraction bar is the same as a “divided by” symbol:

8

2
= 8÷ 2 = 4.
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The same is true for dividing fractions:

1

3
÷ 2

5
=

(
1
3

)(
2
5

) .

We can take the complex fraction

(
1
3

)(
2
5

) and multiply it by 1 without changing its

value:

1

3
÷ 2

5
=

(
1
3

)(
2
5

) ∗ 1

=

(
1
3

)(
2
5

)
We can multiply by any form of 1 we want to and not change the value of the
result.

(
1
3

)(
2
5

) ∗ 1 =

(
1
3

)(
2
5

)
(
1
3

)(
2
5

) ∗ 9

9
=

(
1
3

)(
2
5

)
(
1
3

)(
2
5

) ∗ 12

12
=

(
1
3

)(
2
5

)
With a carefully chosen form of 1, we can transform the division problem into a
multiplication problem.
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1
3

)(
2
5

) ∗ (52)(
5
2

) =
1
3
∗ 5

2
2
5
∗ 5

2

=
1
3
∗ 5

2

1

=
1

3
∗ 5

2

=
5

6

In this way, we can redefine division as multiplication by a reciprocal.

Example

Divide the expressions. Express your answer in lowest form.

2x2 − x− 3

x2 − x− 12
÷ x2 + 5x+ 4

16− x2

2x2 − x− 3

x2 − x− 12
÷ x2 + 5x+ 4

16− x2
=

2x2 − x− 3

x2 − x− 12
∗ 16− x2

x2 + 5x+ 4

=
(2x− 3)(x+ 1)

(x− 4)(x+ 3)
∗ (4 + x)(4− x)

(x+ 1)(x+ 4)

=
(2x− 3)���

�(x+ 1)

���
�(x− 4)(x+ 3)

∗�
���(4 + x)���

�(4− x)(−1)

���
�(x+ 1)���

�(x+ 4)

= −2x− 3

x+ 3
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Exercises 1.6

Reduce each expression to lowest terms.

1)
3x+ 9

x2 − 9
2)

4x2 + 8x

12x+ 24

3)
x2 − 2x

6− 3x
4)

15x2 + 24x

3x2

5)
24x2

12x2 − 6x
6)

x2 + 4x+ 4

x2 − 4

7)
25− y2

2y2 − 8y − 10
8)

3y2 − y − 2

3y2 + 5y + 2

9)
x2 + 4x− 5

x2 − 2x+ 1
10)

x− x2

x2 + x− 2

11)
x2 + 5x− 14

2− x
12)

2x2 + 5x− 3

1− 2x
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Multiply or divide the expressions in each problem.

Express your answers in lowest terms.

13)
3x+ 6

5x2
∗ x

x2 − 4
14)

4x2

x2 − 16
∗ 7x− 28

6x

15)
2a2 − 7a+ 6

4a2 − 9
∗ 4a2 + 12a+ 9

a2 − a− 2
16)

4a2 − 4a− 3

8a+ 4a2
∗ 16a2

4a2 − 6a

17)
x2 − y2

(x+ y)3
∗ (x+ y)2

(x− y)2
18)

2x2 + x− 3

x2 − 1
∗ 2x− 2

2x2 + 5x+ 3

19)
6x

x2 − 4
÷ 3x− 9

2x+ 4
20)

12x

5x+ 20
÷ 4x2

x2 − 16

21)
9x2 + 3x− 2

6x2 − 2x
÷ 3x+ 2

6x2
22)

2a2 − 5a− 3

4a2 + 2a
÷ 2a+ 1

4a

23)
x2 + 7x+ 6

x2 + x− 6
÷ x2 + 5x− 6

x2 + 5x+ 6
24)

x2 + 7x+ 10

x2 − x− 30
÷ 3x2 + 7x+ 2

9x2 − 1

25)
2x2 − x− 28

3x2 − x− 2
÷ 4x2 + 16x+ 7

3x2 + 11x+ 6
26)

9x2 + 3x− 2

12x2 + 5x− 2
÷ 9x2 − 6x+ 1

8x2 − 10x− 3
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1.7 Adding and Subtracting Rational Expressions

Just as we do with numerical fractions, we will need to have common denomina-

tors in order to add or subtract algebraic fractions. When we add
1

2
+

1

3
, we make

a common denominator of 6 so that we can add them together.

1

2
+

1

3
=

1

2
∗ 3

3
+

1

3
∗ 2

2

=
3

6
+

2

6

=
5

6

Because the denominators, 2 and 3, are prime and don’t share any common fac-
tors, the common denominator is simply 3 ∗ 2 = 6. We can see a similar result in
adding algebraic fractions.

Example

Add the fractions. Express your answer in lowest terms.

2

x
+

x

x− 3

2

x
+

x

x− 3
=

2

x
∗ x− 3

x− 3
+

x

x− 3
∗ x
x

=
2(x− 3)

x(x− 3)
+

x ∗ x
x(x− 3)

=
2x− 6 + x2

x(x− 3)
=
x2 + 2x− 6

x(x− 3)
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It’s important to be aware that in subtraction, the negative sign representing sub-
traction must be distributed to all terms in the second numerator.

Example

Subtract the given expressions. Express your answer in lowest terms.

6

x+ 1
− x+ 5

x− 2

6

x+ 1
− x+ 5

x− 2
=

6

x+ 1
∗ x− 2

x− 2
− x+ 5

x− 2
∗ x+ 1

x+ 1

=
6(x− 2)− (x+ 5)(x+ 1)

(x+ 1)(x− 2)

=
6x− 12− (x2 + 6x+ 5)

(x+ 1)(x− 2)

=
6x− 12− x2 − 6x− 5

(x+ 1)(x− 2)

=
−x2 − 17

(x+ 1)(x− 2)

In other situations, the denominators may share a common factor. In this case,
we can turn one of the denominators into the other one:

Example

Add the given fractions.

7

x2 + 8x+ 15
+

2

x+ 3
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7

x2 + 8x+ 15
+

2

x+ 3
=

7

(x+ 3)(x+ 5)
+

2

x+ 3

We can turn (x+ 3) into x2 + 8x+ 15 by multiplying by (x+ 5)

7

(x+ 3)(x+ 5)
+

2

x+ 3
=

7

(x+ 3)(x+ 5)
+

2

x+ 3
∗ x+ 5

x+ 5

=
7

(x+ 3)(x+ 5)
+

2(x+ 5)

(x+ 3)(x+ 5)

=
7 + 2x+ 10

(x+ 3)(x+ 5)

=
2x+ 17

(x+ 3)(x+ 5)

Sometimes, the answer we end up with is not in lowest terms:

Example

Add the fractions.

x

x+ 2
+

8

x2 + 8x+ 12

x

x+ 2
+

8

x2 + 8x+ 12
=

x

x+ 2
+

8

(x+ 2)(x+ 6)

=
x

x+ 2
∗ x+ 6

x+ 6
+

8

(x+ 2)(x+ 6)

=
x(x+ 6)

(x+ 2)(x+ 6)
+

8

(x+ 2)(x+ 6)
=

x(x+ 6) + 8

(x+ 2)(x+ 6)
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x(x+ 6) + 8

(x+ 2)(x+ 6)
=

x2 + 6x+ 8

(x+ 2)(x+ 6)

The numerator is factorable:

x2 + 6x+ 8

(x+ 2)(x+ 6)
=

(x+ 2)(x+ 4)

(x+ 2)(x+ 6)

=
��

��(x+ 2)(x+ 4)

���
�(x+ 2)(x+ 6)

=
x+ 4

x+ 6
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Exercises 1.7

Add or subtract the given expressions.

1)
1

x− 1
− 1

x
2)

3

y − 6
− 1

y

3)
2

x− 3
+

4

x+ 3
4)

3

x+ 4
− 4

x− 2

5)
3

k + 2
− k − 4

k + 5
6)

a+ 1

a
− a

a+ 1

7)
2y

y2 − 25
− y

y − 5
8)

x

x2 − 1
+

4

x+ 1

9)
1

x− 3
+

x

x+ 1
10)

9y

y − 4
− y + 1

y + 5

Add or subtract the given expressions. Express your answers in lowest terms.

11)
b

b+ 1
− b+ 1

2b+ 2
12)

4x+ 1

8x− 12
+

x− 3

2x− 3

13)
2

a2 + 4a+ 3
+

1

a+ 3
14)

1

y + 6
− 4

y2 + 8y + 12

15)
x+ 1

2x+ 4
− x2

2x2 − 8
16)

x+ 1

x+ 2
− x2 + 1

x2 − x− 6
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17)
2x

x2 − 3x+ 2
+

2x

x− 1
− x

x− 2
18)

3x+ 3

2x2 − x− 1
+

1

2x+ 1

19)
4a

a− 2
− 3a

a− 3
+

4a

a2 − 5a+ 6
20)

2

y − 3
− 8− 4y

y2 − 8y + 15

21)
2x

x− 1
+

3x

x+ 1
− x+ 3

x2 − 1
22)

a

a− 1
− 2

a+ 2
+

3(a− 2)

a2 + a− 2

23)
x

x− 1
+

x+ 7

x2 − 1
− x− 2

x+ 1
24)

2y + 5

y2 − 16
− y − 9

y2 − y − 12
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1.8 Complex Fractions

Complex fractions involve simplifying a rational expression which has a compli-
cated numerator and/or denominator.

Example

Simplify.

3 +
x

x+ 2

1− x+ 3

x− 1

There are a variety of ways to approach this problem. One of the most straightfor-
ward ways to simplify the expression above is to create common denominators
for the numerator and the denominator so that each one is a single fractional
expression:

3 +
x

x+ 2

1− x+ 3

x− 1

=

3

1
∗ x+ 2

x+ 2
+

x

x+ 2
1

1
∗ x− 1

x− 1
− x+ 3

x− 1

=

(
3x+ 6 + x

x+ 2

)
(
x− 1− (x+ 3)

x− 1

)

=

(
4x+ 6

x+ 2

)
( −4
x− 1

) (Now this is a division problem)

=
4x+ 6

x+ 2
∗ x− 1

−4
=

2(2x+ 3)

x+ 2
∗ x− 1

−4

=
�2(2x+ 3)

x+ 2
∗ x− 1

��−4(−2)
=

(2x+ 3)(x− 1)

−2(x+ 2)
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Simplifying complex fractions uses all of the previous concepts about rational
expressions which we’ve covered in this chapter.

Example

Simplify.

x− x

x+ 3

1 +
2

x

x− x

x+ 3

1 +
2

x

=

x

1
∗ x+ 3

x+ 3
− x

x+ 3
1

1
∗ x
x

+
2

x

creating common denominators

=

(
x(x+ 3)− x

x+ 3

)
(
x+ 2

x

)

=

(
x2 + 3x− x

x+ 3

)
(
x+ 2

x

) =

(
x2 + 2x

x+ 3

)
(
x+ 2

x

) dividing fractions

=
x2 + 2x

x+ 3
∗ x

x+ 2
=
x(x+ 2)

x+ 3
∗ x

x+ 2

=
x���

�(x+ 2)

x+ 3
∗ x

���x+ 2
factor and cancel to reduce to lowest terms

=
x2

x+ 3
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Exercises 1.8

Simplify each complex fraction. Express your answer in lowest terms.

1)
1(

x+
y

2

) 2)

(
1

x
+

1

y

)
(
y

x
− x

y

) 3)

(
1 +

m

n

)
(

1− n2

m2

)

4)

(
1

x
− 1

y

)
(

1

x2
− 1

y2

) 5)

(
x

y
− x− y

x+ y

)
(
y

x
+
x− y
x+ y

) 6)

(
7

a+ 1
− 3

a

)
(
3

a
+

1

a− 1

)

7)

(
x− 1

2x+ 1

)
(

1− 2

2x+ 1

) 8)

(
1

2x− 2
− 1

x

)
(
2

x
− 1

x− 1

) 9)

(
x+

4

x+ 4

)
(
x− 4x+ 4

x+ 4

)

10)

(
x− x+ 6

x+ 2

)
(
x− 4x+ 15

x+ 2

) 11)

(
1

x+ 2
− 1

x− 3

)
(

1 +
1

x2 − x− 6

) 12)

(
1− 1

x+ 1

)
(

1 +
1

x− 1

)

13)

(
1

a− b −
3

a+ b

)
(

2

b− a +
4

b+ a

) 14)

(
3

y2 − 4

)
(

1

y + 2
− 1

y − 2

) 15)

(
n+ 2− 5

n− 2

)
(

1− 1

(n− 2)2

)

16)

(
4 +

1

x+ 1

)
(

16− 1

(x+ 1)2

) 17)

(
2 +

x− 2

1− x2
)

(
2− 3

x+ 1

) 18)

(
1

2x− 1
− 1

2x+ 1

)
(

4− 1

x2

)
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1.9 Rational Equations

We can also use the skills we have covered in previous sections to solve equations
involving rational expressions. There are three main methods of solution that will
be explored in this section - multiplying on both sides to clear a denominator,
cross-multiplying, and making common denominators. Each of these techniques
is actually the same process, but approached from a slightly different perspective.

Clearing a denominator

Often, if the denominator is a single variable, it can be easy and striaghtforward
to multiply on both sides by the denominator to cancel it out.

Example

Solve for x.

x+
4

x
= 7

If we multiply on both sides by x, it will clear the variable from the denominator:

x+
4

x
= 7

x ∗
(
x+

4

x

)
= (7) ∗ x Multiply on both sides by x

x ∗ x+ x ∗ 4

x
= 7x Distribute the x

x2 + 4 = 7x

x2 − 7x+ 4 = 0 Standard form

x ≈ 0.628, 6.372
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If a problem is stated simply as the equality of two fractions, cross-multiplying
can be a useful method of solution.

Example

Solve for x.

x

2x+ 3
=

7

x− 4

x

2x+ 3
=

7

x− 4

x(x− 4) = 7(2x+ 3)

x2 − 4x = 14x+ 21

x2 − 18x− 21 = 0

x ≈ 19.100,−1.100

Cross-multiplying is really just a short-cut method of clearing out the denomina-
tors by multiplying on both sides by both denominators:

x

2x+ 3
=

7

x− 4

(x− 4)(2x+ 3) ∗ x

2x+ 3
=

7

x− 4
∗ (x− 4)(2x+ 3)

(x− 4)���
��(2x+ 3) ∗ x

��
��2x+ 3

=
7

���x− 4
∗����(x− 4)(2x+ 3)

x(x− 4) = 7(2x+ 3)

Then the equation is ready to be solved as shown above - but by just cross-
mulitiplying, we skip directly to the solution portion of the problem.



1.9. RATIONAL EQUATIONS 73

Sometimes, it is helpful to create a common denominator in order to set up a
situation where cross-multiplying can be used.

Example

Solve for x.

1

x+ 6
+

4

x− 2
=

3

x+ 1

1

x+ 6
+

4

x− 2
=

3

x+ 1

1

x+ 6
∗ x− 2

x− 2
+

4

x− 2
∗ x+ 6

x+ 6
=

3

x+ 1

1(x− 2) + 4(x+ 6)

(x+ 6)(x− 2)
=

3

x+ 1

x− 2 + 4x+ 24

(x+ 6)(x− 2)
=

3

x+ 1

5x+ 22

(x+ 6)(x− 2)
=

3

x+ 1

(5x+ 22)(x+ 1) = 3(x+ 6)(x− 2) = 3(x2 + 4x− 12)

5x2 + 27x+ 22 = 3x2 + 12x− 36

2x2 + 15x+ 58 = 0

x ≈ −3.75± 3.865i
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Example

Solve for x.

2

x− 2
+

x

2x− 1
= 4

2

x− 2
+

x

2x− 1
= 4

2

x− 2
∗ 2x− 1

2x− 1
+

x

2x− 1
∗ x− 2

x− 2
= 4

2(2x− 1) + x(x− 2)

(x− 2)(2x− 1)
= 4

4x− 2 + x2 − 2x

(x− 2)(2x− 1)
= 4

x2 + 2x− 2

(x− 2)(2x− 1)
=

4

1

1(x2 + 2x− 2) = 4(x− 2)(2x− 1) = 4(2x2 − 5x+ 2)

x2 + 2x− 2 = 8x2 − 20x+ 8

0 = 7x2 − 22x+ 10

x ≈ 2.592, 0.551
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In some situations, we can create a single common denominator for every fraction
in the problem and then clear them all at once.

Example

Solve for x.

2

x+ 3
− 4

3x− 1
=

x

3x2 + 8x− 3

2

x+ 3
− 4

3x− 1
=

x

3x2 + 8x− 3

2

x+ 3
∗ 3x− 1

3x− 1
− 4

3x− 1
∗ x+ 3

x+ 3
=

x

3x2 + 8x− 3

2(3x− 1)− 4(x+ 3)

(x+ 3)(3x− 1)
=

x

(x+ 3)(3x− 1)

2(3x− 1)− 4(x+ 3) = x

The missing step above is the clearing of both denominators:

(x+ 3)(3x− 1) ∗ 2(3x− 1)− 4(x+ 3)

(x+ 3)(3x− 1)
=

x

(x+ 3)(3x− 1)
∗ (x+ 3)(3x− 1)

���
�(x+ 3)���

��(3x− 1) ∗ 2(3x− 1)− 4(x+ 3)

��
��(x+ 3)���

��(3x− 1)
=

x

��
��(x+ 3)���

��(3x− 1)
∗����(x+ 3)���

��(3x− 1)

2(3x− 1)− 4(x+ 3) = x
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As is true in the process of cross-multiplying, it isn’t necessary to actually cancel
out the denominators in completing the problem.

2

x+ 3
− 4

3x− 1
=

x

3x2 + 8x− 3

2

x+ 3
∗ 3x− 1

3x− 1
− 4

3x− 1
∗ x+ 3

x+ 3
=

x

3x2 + 8x− 3

2(3x− 1)− 4(x+ 3)

(x+ 3)(3x− 1)
=

x

(x+ 3)(3x− 1)

2(3x− 1)− 4(x+ 3) = x

6x− 2− 4x− 12 = x

2x− 14 = x

x = 14



1.9. RATIONAL EQUATIONS 77

Exercises 1.9

1) x+
5

x
= −6 2) x+

6

x
= −7

3) y − 5

y
= 2 4)

7

a
+ 1 = a

5)
9

2y + 4
=

3

y
6)

4

3n+ 7
=

1

2

7)
x

x+ 3
=

8

x+ 6
8)

y − 2

2
=

5

y − 5

9)
2

n
=

n

5n+ 12
10)

x

4− x
=

2

x

11)
5x

14x+ 3
=

1

x
12)

a

8a+ 3
=

1

3a

13)
9

x− 1
− 2

x+ 4
=

1

x+ 2
14)

1

x− 2
+

4

x+ 5
=

1

x− 3

15)
5

3x+ 2
+

1

x− 1
=

3

x+ 2
16)

1

y − 2
− 4

2y + 5
=

6

y − 1
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17)
5

x+ 1
+

1

x+ 2
= 3 18)

1

2x− 1
− 2

x+ 7
= 1

19)
6

y − 4
− 1

y + 2
= 3 20)

10

a+ 1
+

3

a− 2
= 2

21)
3a

a2 − 2a− 15
− a

a+ 3
=

2a

a− 5

22)
u2 + 2

u2 + u− 2
− 3u

u+ 2
=
−2u− 1

u− 1

23)
4

2x− 1
+

2

x+ 3
=

5

2x2 + 5x− 3

24)
5

x+ 5
− 2

x2 + 2x− 15
=

2

x− 3

25)
5

y − 2
− 3

2y − 1
=

4

2y2 − 5y + 2
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26)
x+ 2

x− 1
+
x+ 4

x
=

2x+ 1

x2 − x

27)
x

x+ 2
+

x+ 1

x2 − 7x− 18
=

5

x− 9

28)
2a

a+ 7
− a

a+ 3
=

5

a2 + 10a+ 21

29)
x− 1

2x+ 1
− 2x− 3

x+ 3
=

3

2x2 + 7x+ 3

30)
y

y + 4
+

6

y + 1
=

y2 + 4

y2 + 5y + 4
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Addendum - Word Problems

Following are a selection of word problems - some from ancient times, some from
the Renaissance and Enlightenment, and some from the 19th and 20th century.

1) A teacher agreed to work 9 months for $562.50 and board. At the end of
the term, on account of two months absence caused by illness, he received only
$409.50 for his seven months work. If the teacher used all nine months of his
board during the term, what was his board per month? (American 1892)

2) A servant is promised $100 plus a cloak as wages for a year. After seven
months, he leaves and receives $20 plus the cloak. How much is the cloak worth?
(Clavius, German 1608)

3) The sales tax on garments is 1
20

of their value. A certain man buys 42 gar-
ments, paying in copper coins. Two garments and 10 copper coins are paid as
tax. What is the price of a garment, O learned one? (Ancient India)

4) Two wine merchants enter Paris, one of them with 64 casks of wine, the
other with 20 casks (all of the same value). Since they do not have enough money
to pay the customs duties, the first pays 5 casks of wine and 40 francs, and the
second pays 2 casks of wine and receives 40 francs change. What is the price of
each cask of wine and what is the duty on each cask? (Chuquet, French 1484)

5) One of two men had 12 fish and the other had 13 fish, and all of the fish
were of the same price. From the first man, a customs agent took away 1 fish and
12 denarii for payment. From the other man he took 2 fish and gave him back 7
denarii as change. Find the customs fee and the price of each fish.
(Fibonacci, Italian 1202)

6) Two traders transporting sheepskins approach their country’s border. The
first trader has 100 sheepskins and the border guard takes 10 sheepskins plus $25
as a tariff. The second trader has 42 sheepskins and for a tariff, the border guard
takes 7 sheepskins but returns $14 change. What is the tariff per sheepskin and
what is the value of each sheepskin?
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7) Two people have a certain amount of money. The first says to the second,
“If you give me 5 denarii, I will have 7 times what you have left.” The second
says to the first, “If you give me 7 denarii, I will have 5 times what you have left.”
How much money does each have? Round to the nearest 10th.
(Leonardo, Italian c. 1500)

8) Two different scenarios from Ancient Greece:

Two friends were walking. One said to the other, “If I had 10 more coins, I would
have 3 times as much money as you.” The other said, “If I had 10 more coins, I
would have five times as much as you.” How many coins does each have?

Two friends were walking. One said to the other, “If you give me 10 of your coins,
I would have 3 times as much money as you.” The other said, “If you give me 10
of your coins, I would have five times as much as you.” How many coins does
each have?

9) Andy and Betty together have $6 less than Christine. If Betty gives $5 to
Andy, then Andy will have half as much as Christine. If, instead, Andy gives $5
to Betty, then Andy will have one-third as much as Betty. How much does each
person have to begin with?

10) Three friends (A, B and C) each have a certain amount of money. A says,
“I have as much as B plus one-third as much as C.” B says, “I have as much as C
plus one-third as much as A.” C says, “I have 10 more than one-third of B.” How
much does each person have? (Ancient Greece)

11) On a test, 39 more pupils passed than failed. On the next test, 7 who passed
the first test failed and one-third of those who failed the first test passed the sec-
ond. As a result, 31 more passed the second test than failed it. What was the
record of passing and failing on the first test?
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12) At two stations, A and B, six miles apart on the railway, the prices of coal
are $20 per ton and $24 per ton respectively. The rates of cartage of coal are $2.00
per ton per mile from A and $3.00 per ton per mile from B. At a certain customer’s
home, on the railroad from A to B, the cost of coal is the same whether delivered
from A or B. Find the distance to this home from A.

13) There were three-fourths as many women as there were men on the train.
At the next station six men and eight women got off the train, and twelve men
and five women got on. There were then three-fifths as many women as men on
the train. How many men and how many women were originally on the train?

14) If a theater could put 5 more seats in a row, it would need 20 rows less,
but if each row had 3 fewer seats, it would take 20 rows more to seat the same
number. How many people will it seat?

15) An audience of 450 people is seated in rows, with the same number of peo-
ple in each row. It would take 5 rows less if 3 more people were seated in each
row. In how many rows are the people seated?

16) If evergreens are planted 4 feet closer together it will take 44 more trees for
a certain piece of road, but if they are planted 6 feet farther apart, it will take 44
fewer trees for the same length of road. How many miles is the piece of road?
(use 5280 feet = 1 mile)

17) A movie theater owner found that by raising the price of each ticket by
$1.00, 200 fewer people attened and she broke even, but that if she lowered the
price by $1.00 per person, 550 people attended and she increased her receipts by
$1000. What is the usual rate per person?

18) The brine pipes in an 84-foot width artificial hockey rink are equally spaced.
If the space between each pair of pipes were increased by 1 inch, then 84 fewer
lengths of pipe would be needed. What is the distance between the pipes now?
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19) A living room shelf is 36 inches long and contains a certain number of
books of uniform width. If each book were one-half inch narrower, the shelf
would hold six more books. How many books of the wider variety does it hold?

20) I am a brazen lion; my spouts are my two eyes, my mouth and flat of my
right foot. My right eye fills a jar in two days, my left eye in three and my foot
in four. My mouth is capable of filling it in six hours. Tell me how long all four
together will take to fill it. (Ancient Greece)

21) A man wishes to have 500 rubii of grain ground. He goes to a mill that has
five stones. The first stone grinds 7 rubii of grain in an hour, the second grinds
5 rubii in an hour, the third 4 rubii in an hour, the fourth grinds 3 rubii per hour
and the fifth grinds 1 rubii per hour. In how long will the grain be ground and
how much is done by each stone? (Clavius, German 1583)

22) If two men and three boys can plow an acre in one-sixth of a day, how long
would it require three men and two boys to plow it?
(Edward Brooks, American 1873)

23) A cobbler can cut leather for ten pairs of shoes in one day. He can finish 5
pairs of shoes in one day. How many pairs of shoes can he both cut and finish in
one day? (Ancient Egypt)

24) Four waterspouts are filling a tank. Of the four spouts, one can fill the tank
in one day, the second takes two days, the third takes three days and the fourth
takes four days. How long will it take all four spouts working together to fill the
tank? (Ancient Greece)

25) If, in one day, a person can make 30 arrows or fletch [put feathers on] 20
arrows, how many arrows can this person both make and fletch in one day? (An-
cient China)
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26) One military horse and one ordinary horse can pull a load of 40 dan. Two
ordinary horses and one inferior horse can pull the same load of 40 dan as can
three inferior horses and one military horse. How much can each horse pull in-
dividually? (Ancient China)

27) A barrel of water has several holes in it. The first hole empties the full bar-
rel in 3 days. The second hole empties the full barrel in 5 days. The third hole
empties the full barrel in 20 hours and the last hole empties the full barrel in 12
hours. With all the holes open, how long will it take to empty the barrel?
(Levi ben Gershon, French 1321)

28) A certain lion could eat a sheep in 4 hours; a leopard could do so in 5 hours;
and a bear in 6 hours. How many hours would it take for all three animals to de-
vour a sheep if it were thrown in among them? (Fibonacci, Italian 1202)

29) Two ships are some distance apart, which journey the first can complete in
5 days and the other in 7 days - it is sought in how many days they will meet if
they begin the journey at the same time. (Fibonacci, Italian 1202)

30) Sarah, alone, can paint the garage in 24 hours, her sister Jenny, alone, can
paint the same garage in 12 hours. With the aid of their mother, the three together
can paint the garage in 4 hours. How long would it take their mother, working
alone, to paint the garage?

31) It required 75 workers 38 days to build an embankment to be used for flood
control. Had 18 workers been removed to another job at the very start of opera-
tions, how much longer would it have taken to build the embankment?

32) Mark, alone, requires 6 hours to paint a fence; however, his younger brother,
who alone could do it in 9 hours, helps him. If they start work at 8:30am, at what
time should they finish the work?
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33) A group decides to build a cabin together. The job can be done by 3 skilled
workers in 4 days or by 5 amateurs in 6 days. How long would it take if they all
work together?

34) If it requires 18 workers 50 days to build a piece of road, how many days
sooner would it be done if 7 more workers were hired at the beginning of opera-
tions?

35) A contractor estimated that a certain piece of work would be done by 9
carpenters in 8 hours or by 16 amateurs in 9 hours. The contractor wishes to get
the job done as quickly as possible and uses both professional carpenters and
amateurs on the same job. Four carpenters and 4 amateurs begin work at 6am.
Allowing 45 minuntes for lunch, at what time should they finish the job?

36) Mrs. Ellis alone can do a piece of work in 6 days. Her oldest daughter
takes 2 days longer; her youngest daughter takes twice as long as her mother.
How long will it take to complete the job if all three work together?

37) If 5 men and 2 boys work together, a piece of work can be completed in
one day and if 3 men and 6 boys work together, it can be completed in one day.
How long would it take a boy to do the work alone?

38) A coal company can fill a certain order from one mine in 3 weeks and from
a second mine in 5 weeks. How many weeks would be required to fill the order
if both mines were used?

39) If 25 skilled workers work for 8 days, they can complete the construction
of a concrete dam; 12 skilled workers and 15 untrained workers together can
complete the dam in 10 days. How long would it take an untrained worker alone
to complete the work on the dam?
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40) A and B working togehter can complete a piece of work in 30 days. After
they have both worked 18 days, however, A leaves and B finishes the work alone
in 20 more days. Find the time in which each can do the work alone.

41) A dump cart can haul enough gravel to fill a pit in 6 days. A truck can do
the same work in 2 days. How long would it take two dump carts and one truck
working together to fill the pit?



Chapter 2

Polynomial and Rational Functions

This chapter will explore the solution of equations and inequalities involving
both polynomial and rational functions, primarily through the examination of
their graphical representations. We will also explore the use of polynomial long
division and synthetic division in breaking down polynomials into their prime
factors and the relationship between factors and roots.

2.1 Representing Intervals

Many of the problems in this chapter will have solutions that must be expressed
as an interval. This means a range of x values that will satisfy the original prob-
lem. In this section, we will introduce the translation of graphical intervals into
algebraic notation.

For example, in the diagram below, we would represent the interval shown on
the graph as x < −3.

−5 −4 −3 −2 −1 0 1 2 3 4 5

87
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In this diagram, we would represent the interval shown on the graph as
1 ≤ x < 7.

−1 0 1 2 3 4 5 6 7 8 9

In the next diagram, we have two separate intervals to represent - and we will
need two separate statements to represent them.

−10 −8 −6 −4 −2 0 2 4 6 8 10

These intervals would be represented as x < −4 OR x ≥ 6.

Sometimes students try to represent the intervals above as 6 ≤ x < −4, however,
this expression would represent a single interval where x is both less than −4
and, at the same time, greater than or equal to +6. This is simply not possible, and
would result in the empty set, which is the reason that the OR portion is needed
in the correct answer.

Example

Represent the intervals indicated on the graph below:

−20 −15 −10 −5 0 5 10 15 20 25 30 35

On this graph, there is one interval beginning at −5 and ending at +5 and an-
other beginning at 30 and continuing to infinity. Thus, these intervals would be
represented as −5 < x ≤ 5 OR x ≥ 30.

Students familiar with another form of interval notation may wish to represent
this interval as (−5, 5]∪ [30,∞). Both forms of notation accomplish the same goal.
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Exercises 2.1

In each problem below, represent the intervals indicated on the graph.

1)

−7 −4 0 5

2)

−5 −1 8 12

3)

−1 2

4)

−4 6

5)

−8 −6 3

6)

−5 −2 7
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7)

−10 −4 1 6

8)

−6 −2 2 15

9)

−12 −7 5

10)

−6 −2 3

11)

0 4

12)

0
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13)

−5 −3 −1 4

14)

−2 5 7
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2.2 Solution by Graphing

In previous courses the solution of linear equations is covered, generally by sepa-
rating the variables and constants on opposite sides of the equation to isolate the
variable. In the previous chapter we examined the solution of quadratic equa-
tions, in which the variable is isolated using the technique of completing the
square. The major difference between these methods of solution is that, in the
solving of quadratic equations, we must contend with several different powers
of the variable which makes it considerably more difficult to isolate the variable.
There are formulas like the quadratic formula available to solve cubic (x3) and
quartic (x4) equations, however these formulas are somewhat cumbersome and
archaic. The primary method for solving eqautions of degree higher than 2 is
solution by graphing or by algorithm.

Solution by algorithm is a very interesting process as there are many different
algorithms available. Which algorithm is most appropriate often depends on the
types of equations being solved and the technology available to solve them. Two
major types of algorithms that rely on the graphincal representation of an equa-
tion are called “Double False Position” and “The Newton-Raphson Method.”
Many commonly available pieces of techonolgy use one of these methods. Since
we have graphing calculators available to us, we will focus on solution by graph-
ing.

Whether using a TI (Texas Instruments) or Casio graphing calculator, or a soft-
ware based graphing ustility such as Graph or Desmos, the solution of these
equations focuses on finding the x-intercepts of the graph since this is where
the y value is 0. The specific processes for solving equations using each of these
different tools will be covered in class.

Example

Solve for x.

x3 − 3x2 = 2x− 7

The first step is to move all terms to one side of the equation and set them equal
to zero.

x3 − 3x2 − 2x+ 7 = 0
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Then we graph the function and look for which x values will make the y value
equal to 0.

−1 1 2 3

−4

−2

2

4

6
y = x3 − 3x2 − 2x+ 7

In this graph, we can see three roots, or x-intercepts, where the graph crosses the
x-axis. These are the x-values that make the y-value equal to 0. We can use the
available technology to find these x-values.

−1 1 2 3

−4

−2

2

4

6
y = x3 − 3x2 − 2x+ 7

x ≈ −1.491

x ≈ 1.657

x ≈ 2.834

So, we can see that the solutions to the eqaution x3 − 3x2 − 2x+ 7 = 0 are
x ≈ −1.491, 1.657, 2.834.

We can check these answers by plugging them back into the original equation.



94 CHAPTER 2. POLYNOMIAL AND RATIONAL FUNCTIONS

(−1.491)3 − 3 ∗ (−1.491)2 − 2 ∗ (−1.491) + 7 = −3.3146− 3 ∗ 2.223 + 2.982 + 7

= −3.3146− 6.669 + 2.982 + 7

= −0.0016

The result is not exactly 0 since our answers have been rounded off to the 1000th
place. If we wanted greater accuracy, then we should include greater accuracy in
the value of our answers.

(1.657)3 − 3 ∗ (1.657)2 − 2 ∗ (1.657) + 7 = 4.5495− 3 ∗ 2.7456− 3.314 + 7

= 4.5495− 8.2368− 3.314 + 7

= −0.0013

and

(2.834)3 − 3 ∗ (2.834)2 − 2 ∗ (2.834) + 7 = 22.7614− 3 ∗ 8.03155− 5.668 + 7

= 22.7614− 24.09465− 5.668 + 7

= −0.00125
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Exercises 2.2

Solve for x.

1) 3x3 − 7x2 − x+ 1 = 0 2) 24x4 + 5x2 − 13x+ 3 = 0

3) 2x3 − 2x2 − 28x+ 51 = 0 4) 2x3 + 5x2 − 15x+ 7 = 0

5) x4 − 4x3 + x2 + 6x+ 1 = 0 6) x4 + 2x3 + x2 − x− 6 = 0

7) x4 − 5x3 − 3x2 + 17x− 9 = 0 8) 2x3 − 5x− 3 = 0

9) x4 − 4x3 − 7x2 − 36x− 18 = 0 10) 6x3 − 25x2 + 21x+ 10 = 0

11) 2x4 − 5x3 + x2 + 4x− 2 = 0 12) x4 + x3 − 5x2 + x− 4 = 0
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2.3 Solution of Polynomial Inequalities by Graphing

In this section, we will combine the concepts of the previous two sections to solve
polynomial inequalities. In Section 2.2, we solved equations by graphing and
finding the x-values which made y = 0. In solving an inequality, we will be
concerned with finding the range of x values that make y either greater than or
less than 0, depending on the given problem.

Example

Solve the given inequality.

2x3 + 8x2 + 5x− 3 ≥ 0

First, we graph the function:

−3 −2 −1 1

−5

5

10

y = 2x3 + 8x2 + 5x− 3

Then we identify the intervals of x-values that make the y value greater than or
equal to zero, as indicated in the problem.
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−3 −2 −1 1

−5

5

10

y ≥ 0

y ≥ 0A B

C

The indicated roots of the function (A, B and C) are the x-values that make y
equal to zero. These points divide the graph between the regions where y is
greater than zero and the regions where y is less than zero. The solution to the
given inequlaity 2x3 + 8x2 + 5x− 3 ≥ 0 are A≤ x ≤B OR x ≥C.

When we find the values of A, B and C: A= −3, B≈ −1.366 and C≈ 0.366, we can
complete the solution to the problem.

2x3 + 8x2 + 5x− 3 ≥ 0

−3 ≤ x ≤ −1.366 OR x ≥ 0.366

Example

Solve the given inequality.

x4 − 2x3 − 5x2 + 8x+ 3 ≤ 0

First, we graph the function:
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−2 −1 1 2

−5

5

y = x4 − 2x3 − 5x2 + 8x+ 3

In this problem, we’re looking for the intervals of x values that make y less than
or equal to zero. First, we identify the roots of the function:

−3 −2 −1 1 2 3

−5

5

x ≈ −2.034

x ≈ −0.320

x ≈ 1.806

x ≈ 2.549

Next, we’ll identify the intervals where the y values are less than zero:
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−2 −1 1 2

−5

5

y ≤ 0 y ≤ 0

So, the solution to the original inequality is:

x4 − 2x3 − 5x2 + 8x+ 3 ≤ 0

−2.034 ≤ x ≤ −0.320 OR 1.806 ≤ x ≤ 2.549

In the next example we’ll be looking to identify both the intervals where y is
greater than zero, and the intervals where y is less than zero.

Example

Determine the interval(s) for which x3 + 5x2 + 5x+ 1 ≥ 0

Determine the interval(s) for which x3 + 5x2 + 5x+ 1 < 0

Once again, we’ll start by graphing the function to find the roots:
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−4 −3 −2 −1 1 2 3

−2

2

4

6

x ≈ −3.732

x = −1 x ≈ −0.268

Now that we’ve indentified the roots, we can determine where the y values are
greater than zero and where they’re less than zero.

For y ≥ 0, we can see that this corresponds to: −3.732 ≤ x ≤ −1 OR x ≥ −0.268

For y < 0, we can see that this corresponds to: x < −3.732 OR −1 < x < −0.268
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Exercises 2.3

1) Determine the interval(s) for which x3 − 4x2 + 2x+ 3 ≥ 0

Determine the interval(s) for which x3 − 4x2 + 2x+ 3 < 0

2) Determine the interval(s) for which 4x3 − 4x2 − 19x+ 10 ≥ 0

Determine the interval(s) for which 4x3 − 4x2 − 19x+ 10 < 0

3) Determine the interval(s) for which x3 − 2.5x2 − 7x− 1.5 ≥ 0

Determine the interval(s) for which x3 − 2.5x2 − 7x− 1.5 < 0

4) Determine the interval(s) for which x3 − 3.5x2 + 0.5x+ 5 ≥ 0

Determine the interval(s) for which x3 − 3.5x2 + 0.5x+ 5 < 0
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5) Determine the interval(s) for which 6x4 − 13x3 + 2x2 − 4x+ 15 ≥ 0

Determine the interval(s) for which 6x4 − 13x3 + 2x2 − 4x+ 15 < 0

6) Determine the interval(s) for which x4 − x3 − x2 + 3x− 5 ≥ 0

Determine the interval(s) for which x4 − x3 − x2 + 3x− 5 < 0

7) Determine the interval(s) for which 3x4 + 3x3 − 14x2 − x+ 3 ≥ 0

Determine the interval(s) for which 3x4 + 3x3 − 14x2 − x+ 3 < 0

8) Determine the interval(s) for which 4x4 − 4x3 − 7x2 + 4x+ 3 ≥ 0

Determine the interval(s) for which 4x4 − 4x3 − 7x2 + 4x+ 3 < 0
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Determine the interval(s) that satisfy each inequality.

9) x3 + x2 − 5x+ 3 ≤ 0 10) x3 − 7x+ 6 > 0

11) x3 − 13x+ 12 > 0 12) x4 − 10x2 + 9 < 0

13) 6x4 − 9x2 − 4x+ 12 ≥ 0 14) x4 − 5x3 + 20x− 16 > 0

15) x3 − 2x2 − 7x+ 6 ≤ 0 16) x4 − 6x3 + 2x2 − 5x+ 2 ≤ 0

17) 2x4 + 3x3 − 2x2 − 4x+ 2 > 0 18) x5 + 5x4 − 4x3 + 3x2 − 2 ≤ 0
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2.4 Solution of Rational Inequalities by Graphing

In the previous section, we saw how to solve polynomial inequalities by graph-
ing. In this section, we will use similar methods to solve rational inequalities.
Rational inequalities involve ratios of polynomials or fractions. Because these
types of problems involve fractions, the graphs of the functions that we work
with will have what are known as asymptotes. This word comes from a Greek
root having to do with two lines that come very close to each other but never
meet.

The vertical asymptotes of a graph will appear at places where the original ex-
pression has a zero denominator. This means that the function is not defined at
those x values and so, rather than having a y value at that point, the graph has an
asymptote.

Example

Below is a graph of the function y =
x+ 2

x− 1

−8 −6 −4 −2 2 4 6 8

−5

5

Rather than having a y value at the point where x = 1, the dotted line indicates
the asymptote where the function is not defined. In the previous section, we were
interested in finding the roots of the function because these are the places where
y = 0, and can be the dividing points between where the y values are greater than
zero (y > 0) and the where the y values are less than zero (y < 0).
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The importance of the asymptotes in analyzing rational functions is that, like the
roots, these represent x values that can be the dividing points between where
y > 0 and where y < 0.

Example

Solve the given inequality.

2

x− 3
> 0

First we examine the graph:

−8 −6 −4 −2 2 4 6 8

−5

5

Notice that the asymptote for this graph occurs at the value x = 3, because this is
the x value that creates a zero denominator. Also notice that the y values switch
from being negative to being positive across the asymptote.

There are no roots for this function because there are no x values that make y = 0.
For a fraction to be zero, the numerator must equal zero. In this example the
numerator is 2 and no value of x will make it equal zero. Therefore the only
possible dividing point on the graph is x = 3, and the solution to the inequality
is x > 3.
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Example

Solve the given inequality.

x− 2

x− 3
> 0

−8 −6 −4 −2 2 4 6 8

−5

5

In this inequality, there is again an asymptote at x = 3, but there is also a root at

the value x = 2, because when x = 2. y =
2− 2

2− 3
=

0

−1
= 0. So we have two

dividing points to consider, x = 2 and x = 3. We can see from the graph that
y > 0 for x < 2 or x > 3, so that is the solution to the given inequality.

Example

Solve the given inequality.

x2 − 2

x− 3
> 0

In this problem, we have the same asymptote as the previous two problems: x =
3. However, in this inequality, there are two roots, because there are two x values
that make the numerator equal zero.

x2 − 2 = 0 means that x2 = 2 and x = ±
√

2 ≈ ±1.414

We can see these roots on the graph.
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−8 −6 −4 −2 2 4 6 8

−5

5

10

15

In the graph above, we can see the asymptote at x = 3 and the two roots at
x ≈ 1.414,−1.414.

The x values that make y > 0 are −1.414 < x < 1.414 OR x > 3.

Example

Solve the given inequality.

x− 2

x2 − 3
> 0

−8 −6 −4 −2 2 4 6 8

−5

5

The roots for this function are the x values that make the numerator equal zero:

x− 2 = 0, therefore x = 2, and we can see this root on the graph.
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The asymptotes for the function are the x values that make the denominator equal
zero:

x2 − 3 = 0 means that x2 = 3 and x = ±
√

3 ≈ ±1.732

−8 −6 −4 −2 2 4 6 8

−5

5

Therefore the solution for the given inequality is:

−1.732 < x < 1.732 OR x > 2

Example

Solve the given inequality.

5x+ 1

x2 + 3x− 4
< 0

−8 −6 −4 −2 2 4 6 8

−5

5
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Roots

5x+ 1 = 0

5x = −1

x = −0.2 = −1
5

Asymptotes

x2 + 3x− 4 = 0

(x+ 4)(x− 1) = 0

x = −4, 1

−8 −6 −4 −2 2 4 6 8

−5

5

If we combine the algebraic analysis above with what we see in the graph, then
we know that the dividing points important to the solution of this inequality are
at x = −4,−0.2, 1. The intervals where the y values are less than zero are x < −4
OR −0.2 < x < 1.
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Example

x2 + 2x− 1

x2 + 7x+ 5
≤ 0

−8 −6 −4 −2 2 4 6 8

−5

5

Roots

x2 + 2x− 1 = 0

x ≈ −2.414, 0.414

Asymptotes

x2 + 7x+ 5 = 0

x ≈ −6.193,−0.807

We can see that the dividing points important to the solution of the inequality are
x ≈ −6.193,−2.414,−0.807, 0.414. The intervals where the y values are less than
or equal to zero are −6.193 ≤ x ≤ −2.414 OR −0.807 ≤ x ≤ 0.414.
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Exercises 2.4

Solve each inequality.

1)
x+ 4

x2 − 8x+ 12
> 0 2)

2x+ 3

x2 − 2x− 35
< 0

3)
x2 − 5x− 14

x2 + 3x− 10
< 0 4)

2x2 − x− 3

x2 + 10x+ 16
> 0

5)
3x+ 2

x2 + x− 5
< 0 6)

x2 + 2x+ 5

x2 − 3x− 7
> 0

7)
x3 + 9

x2 + x− 1
> 0 8)

x3 + 9

x2 + x+ 1
> 0

Solve each inequality.

9)
x2 − 2x− 9

3x+ 11
> 0 10)

x2 + 4x+ 3

2x+ 1
< 0

11)
x2 + x− 5

x2 − x− 6
> 0 12)

x3 + 2

x2 − 2
> 0

13)
x2 + 2x− 7

x2 + 3x− 6
< 0 14)

2x− x2

x2 − 4x+ 6
< 0

15)
x2 − 7

x2 + 5x− 1
< 0 16)

x− 5

3x2 − 2x− 3
> 0
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2.5 Finding Factors from Roots

One method of solving equations involves finding the factors of the polynomial
expression in the equation and then setting each factor equal to zero.

x2 + 8x+ 15 = 0

(x+ 5)(x+ 3) = 0

x+ 5 = 0 x+ 3 = 0

x = −5 x = −3

In this process, the reasoning is that if (x+ 5) times (x+ 3) equals zero, then one
of those expressions must be equal to zero. In setting them equal to zero, we find
the solutions of x = −5,−3. Plugging them back into the factored expression we
see the following:

(−5 + 5)(−5 + 3) = 0 ∗ −2 = 0

and

(−3 + 5)(−3 + 3) = 2 ∗ 0 = 0

This process works in reverse as well. In other words, if we know a root of the
function, we can find factors for the expression.

Example

Find a quadratic equation that has roots of −2 and +3.

x = −2 x = 3

x+ 2 = 0 x− 3 = 0

(x+ 2)(x− 3) = 0

x2 − x− 6 = 0
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Roots that are fractions are a little trickier, but really no more difficult:

Example

Find a quadratic equation that has roots of −5 and 2
3
.

x = −5 x = 2
3

x+ 5 = 0 3x = 2

x+ 5 = 0 3x− 2 = 0

(x+ 5)(3x− 2) = 0

3x2 + 13x− 10 = 0



114 CHAPTER 2. POLYNOMIAL AND RATIONAL FUNCTIONS

Exercises 2.5

Find a quadratic equation that has the indicated roots.

1) 4,−1 2) −2, 7 3) 3
2
, 1

4) −1
5
, 2
3

5) 1
3
, 3 6) −4, 2

5

7) 1
2
,−7

2
8) −1, 3

5
9) −2

3
,−3

10) −2
3
,−3

4
11) −5

2
, 3 12) −6,−2
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2.6 Polynomial Long Division

Polynomial long division has many similarities to numerical long division, so it
is important that we understand how and why numerical long division works
the way it does before discussing polynomial long division. First the HOW?

Given the numerical problem 87, 462÷38, the first step is to determine the highest
place value in the answer.

2
38)87, 462

Often the first step in numerical long division is to say “Does 38 divide into 8?”
“No.” “Does 38 divide into 87?” “Yes.” This tells us that the first digit in the
answer will be over the 7 in 87,462, and consequently will be in the thousands
place. Once we know that the first digit in the answer will be in the thousands
place, the next question is “How many thousands?” We can determine that 2 ∗
38 = 76 but 3∗38 = 114 (too big), so we know that the first digit in the answer will
be 2. Then we subtract, include the 4 and examine what is left over to continue.

2
38)87, 462
−76

114

Here, we see that 114÷ 38 = 3, so we know that the next digit in the answer will
be 3.

2 3
38)87, 462
−76

114
−114

0006

After including the 6, we can see that 38 does not divide evenly into 6, so we put
a zero as the next digit in our answer and proceed:
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2 30
38)87, 462
−76

114
−114

0006
0

00062

Now that we have included all the digits from our original number 87,462, the
last step is to divide 38 into 62. This goes one time with 24 left over.

2 301
38)87, 462
−76

114
−114

0006
−0

00062
−38

00024

So, now we have the solution to the original problem 87, 462÷ 38 = 2, 301 R24 or
2, 30124

38
.

The WHY? of the long division algorithm is somewhat hidden by the HOW? In
the first step, we are determining which place value will hold the first digit of our
answer. When we determine that 38 does divide into 87, this indicates that the
first digit in our answer will be the thousands place. Dividing 38 into 87 tells us
how many thousands there will be. Then we subtract:

87, 462
−76, 000

11, 462
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Now we need to determine how many times 38 will divide into 11,462. We de-
cided on 300 ∗ 38 = 11, 400, then we subtract to see how much is left over:

11, 462
−11, 400

00, 062

We can see that we won’t need any tens in our answer, and that 38 divides into 62
one time with 24 left over, thus the answer is 2 thousands, 3 hundreds, no tens, 1
and a remainder of 24. To check the answer, we multiply 38 ∗ 2301 and add 24:

2, 301
×38

18408
6903
87438

+24
87462

Polynomial long division works in much the same way that numerical long divi-
sion does. Given a problem A÷B, the goal is to find a quotient Q and remainder
R so that A = B ∗Q+R.

Let’s look at this with the example 2x4 + 7x3 + 4x2 − 2x− 1÷ x2 + 3x+ 1 or:

2x4 + 7x3 + 4x2 − 2x− 1

x2 + 3x+ 1

So, we are looking to answer the question:

A = B ∗ Q +R

2x4 + 7x3 + 4x2 − 2x− 1 = (x2 + 3x+ 1) ∗ (?+?+?)+?

If we want to mulitply x2 + 3x+ 1 times something and end up with 2x4 + 7x3 +
4x2− 2x− 1, then what we multiply by is going to have to start with 2x2, because
x2 ∗ 2x2 = 2x4.
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Now we’re working with this:

A = B ∗ Q +R

2x4 + 7x3 + 4x2 − 2x− 1 = (x2 + 3x+ 1) ∗ (2x2+?+?)+?

But the 2x2 doesn’t just get multiplied by the x2, it will also get multiplied by the
3x and the 1. So now we have:

A = B ∗ Q +R

2x4 + 7x3 + 4x2 − 2x− 1 = (x2 + 3x+ 1) ∗ (2x2+?+?)+?

= 2x4 + 6x3 + 2x2+?????

The issue this raises is that the next multiplication (? ∗ x2+? ∗ 3x+? ∗ 1) needs to
add only 1x3 to our answer, because we need 7x3 and we already have 6x3 from
the previous multiplication. That means we’re going to want to multiply next by
1x:

A = B ∗ Q +R

2x4 + 7x3 + 4x2 − 2x− 1 = (x2 + 3x+ 1) ∗ (2x2 + 1x+?)+?

= 2x4 + 6x3 + 2x2

= 1x3 + 3x2 + x

= 2x4 + 7x3 + 5x2 + 1x+???

In the next round of mutiplication, we’re going to want to bring the 5x2 down to
4x2, so we’ll need to multiply by −1.
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A = B ∗ Q +R

2x4 + 7x3 + 4x2 − 2x− 1 = (x2 + 3x+ 1) ∗ (2x2 + 1x− 1) + 0

= 2x4 + 6x3 + 2x2

= 1x3 + 3x2 + x

= −1x2 − 3x− 1

= 2x4 + 7x3 + 5x2 − 2x− 1

Now we also know that the remainder is zero, because x2 + 3x+ 1 divides evenly
into 2x4 + 7x3 + 4x2 − 2x− 1 and so:

2x4 + 7x3 + 4x2 − 2x− 1 = (x2 + 3x+ 1) ∗ (2x2 + 1x− 1)

This method makes the reasoning behind dividing polynomials somewhat more
apparent than the long division process, but it is more cumbersome. The way
that polynomial long division is usually approached is as follows:

x2 + 3x+ 1
)

2x4 + 7x3 + 4x2 − 2x− 1

Then, just as we did in the other method, we question “What should we multiply
x2 by to get 2x4?” Answer: “2x2” This is the first term in our answer:

2x2

x2 + 3x+ 1
)

2x4 + 7x3 + 4x2 − 2x− 1

Then we multiply 2x2(x2 + 3x + 1) and change all the signs to see what we’ll be
left with:

2x2

x2 + 3x+ 1
)

2x4 + 7x3 + 4x2 − 2x− 1
− 2x4 − 6x3 − 2x2
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This indicates that we’ll have the 2x4 we’ll need in our answer, as well six of the
seven x3’s and two of the four x2’s. We’ll now need 1x3 next:

2x2

x2 + 3x+ 1
)

2x4 + 7x3 + 4x2 − 2x− 1
− 2x4 − 6x3 − 2x2

x3 + 2x2 − 2x

This means we’ll need to multiply by 1x:

2x2 + x

x2 + 3x+ 1
)

2x4 + 7x3 + 4x2 − 2x− 1
− 2x4 − 6x3 − 2x2

x3 + 2x2 − 2x
− x3 − 3x2 − x

− x2 − 3x− 1

Here, we still need to pick up a −1x2, which means that our next multiplication
will be with −1:

2x2 + x− 1

x2 + 3x+ 1
)

2x4 + 7x3 + 4x2 − 2x− 1
− 2x4 − 6x3 − 2x2

x3 + 2x2 − 2x
− x3 − 3x2 − x

− x2 − 3x− 1
x2 + 3x + 1

0

Because x2 + 3x + 1 divides evenly into 2x4 + 7x3 + 4x2 − 2x − 1 we have a zero
remainder. In the next example there will be a non-zero remainder:

Example

Divide:

3x4 − 8x3 + 19x2 − 15x+ 10

x2 − x+ 4
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First, we set up the problem:

x2 − x+ 4
)

3x4 − 8x3 + 19x2 − 15x+ 10

Then, we question: “What do we need to multiply x2 by to get 3x4?” Answer:
“3x2”

3x2

x2 − x+ 4
)

3x4 − 8x3 + 19x2 − 15x+ 10

Then, we multiply, change signs (subtract) and combine like terms:

3x2

x2 − x+ 4
)

3x4 − 8x3 + 19x2 − 15x+ 10
− 3x4 + 3x3 − 12x2

− 5x3 + 7x2 − 15x

Now we’ll need to multiply by −5x, change signs and combine like terms:

3x2 − 5x

x2 − x+ 4
)

3x4 − 8x3 + 19x2 − 15x+ 10
− 3x4 + 3x3 − 12x2

− 5x3 + 7x2 − 15x
5x3 − 5x2 + 20x

2x2 + 5x+ 10

We need 2x2 so we’ll need to multiply by 2, change signs and combine like terms:

3x2 − 5x + 2

x2 − x+ 4
)

3x4 − 8x3 + 19x2 − 15x+ 10
− 3x4 + 3x3 − 12x2

− 5x3 + 7x2 − 15x
5x3 − 5x2 + 20x

2x2 + 5x+ 10
− 2x2 + 2x − 8

7x + 2
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Because there is no positive power of x that we can multiply x2 by to get 7x, then
this is our remainder: 7x+ 2.

So:

A = B ∗ Q + R

3x4 − 8x3 + 19x2 − 15x+ 10 = (x2 − x+ 4) ∗ (3x2 − 5x+ 2) + (7x+ 2)
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Exercises 2.6

Find the quotient in each problem.

1)
y3 − 4y2 + 6y − 4

y − 2
2)

x3 − 5x2 + x+ 15

x− 3

3)
x3 − 4x2 − 3x− 10

x2 + x+ 2
4)

2x3 − 3x2 + 7x− 3

x2 − x+ 3

5)
x4 + 2x3 − x2 + x+ 6

x+ 2
6)

x4 + x3 + 5x2 + 3x+ 6

x2 + x− 1

7)
2z3 + 5z + 8

z + 1
8)

x5 + 3x+ 2

x3 + 2x+ 1

9)
x4 + 2x3 + 4x2 + 3x+ 2

x2 + x+ 2
10)

2x4 + 3x3 + 3x2 − 5x− 3

2x2 − x− 1

11)
2y5 − 3y4 − y2 + y + 4

y2 + 1
12)

3x5 − 4x3 + 3x2 + 12x− 10

x2 + 2x− 1

13)
5x4 − 3x2 + 2

x2 − 3x+ 5
14)

3y3 − 4y2 − 3

y2 + 5y + 2
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2.7 Synthetic Division

The process for polynomial long division (like the process for numerical long
division) has been separated somewhat from its logical underpinnings for a more
efficient method to arrive at an answer. For particular types of polynomial long
division, we can even take this abstraction one step further. Synthetic Division is
a handy shortcut for polynomial long division problems in which we are dividing
by a linear polynomial. This means that the highest power of xwe are dividing by
needs to be x1. This limits the usefulness of Synthetic Division, but it will serve
us well for certain purposes. Let’s examine where the coefficients in our answer
come from when we divide by a linear polynomial:

2x3

x− 5
)

2x4 − 6x3 − 23x2 + 16x− 5
− 2x4 + 10x3

4x3 − 23x2

Notice that the first coefficient in the answer is the same as the first coefficient in
the polynomial we’re dividing into. This is because we’re dividing by a polyno-
mial in the form 1x1−a. This also makes the power of the first term in the answer
one less than the power of the polynomial we are dividing into. Let’s see where
the subsequent coefficients in the answer come from:

2x3 + 4x2

x− 5
)

2x4 − 6x3 − 23x2 + 16x− 5
− 2x4 + 10x3

4x3 − 23x2

− 4x3 + 20x2

− 3x2 + 16x

The next coefficient in the answer (4) comes from the combination of the −6 and
the +10. The +10 came from multiplying the 2 in the answer by the 5 in the
divisor x − 5. The next coefficient in the answer will be −3, which comes from
multiplying the 4 (in the answer) by the 5 (in the divisor) and combining it with
the −23 in the polynomial we’re dividing into:



2.7. SYNTHETIC DIVISION 125

2x3 + 4x2 − 3x

x− 5
)

2x4 − 6x3 − 23x2 + 16x− 5
− 2x4 + 10x3

4x3 − 23x2

− 4x3 + 20x2

− 3x2 + 16x
3x2 − 15x

The last part of our answer will come from multiplying the −3 in the answer
times the 5 in the divisor (making −15) and combining this with the +16 in the
polynomial we’re dividing into:

2x3 + 4x2 − 3x + 1

x− 5
)

2x4 − 6x3 − 23x2 + 16x− 5
− 2x4 + 10x3

4x3 − 23x2

− 4x3 + 20x2

− 3x2 + 16x
3x2 − 15x

x− 5
− x + 5

0

1

The process of Synthetic Division uses these relationships as a shortcut to finding
the answer. The set-up for a Synthetic Division problem is shown below:

5 2 −6 −23 16 −5
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This set-up allows us to complete the division problem
2x4 − 6x3 − 23x2 + 16x− 5

x− 5
.

5 2 −6 −23 16 −5

The first coefficient in the answer is the same as the first coefficient in the polyno-
mial we’re dividing into:

5 2 −6 −23 16 −5
↓
2

To get the next coefficient, we multiply the 2 by the 5 to get +10 and flll this in
under the −6:

5 2 −6 −23 16 −5
↓ +10
2

Then, −6 + 10 = +4, which is the next coefficient in the answer:

5 2 −6 −23 16 −5
↓ +10
2 4

Then, we continue this process, multiplying the 4 by the 5 to get 20 and combin-
ing this with the −23: −23 + 20 = −3:

5 2 −6 −23 16 −5
↓ +10 +20
2 4 −3

Next, multiply the −3 by the 5 and combine the resulting −15 with the 16:

5 2 −6 −23 16 −5
↓ +10 +20 −15
2 4 −3 1
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In the last step, multiply the 1 times the 5 and combine the result with the −5 in
the problem to get zero:

5 2 −6 −23 16 −5
↓ +10 +20 −15 5
2 4 −3 1 0

This last coefficient represents the remainder - in this case 0. The other numerals
in the answer represent the coefficients for the powers of x in the answer. On the
far right is the remainder, then the constant (x0) term, then the linear (x1) term
and so on:

5 2 −6 −23 16 −5
↓ +10 +20 −15 5

2x3 4x2 −3x1 1x0 0

2x4 − 6x3 − 23x2 + 16x− 5

x− 5
= 2x3 + 4x2 − 3x+ 1

Let’s look at another example:

Example

Use Synthetic Division to divide:

3x3 + 5x2 − 9x+ 9

x+ 3

Since Synthetic Division is set up to divide by x − a, if we’re dividing by x + 3
we’ll need to use a −3 in the Synthetic Division:

−3 3 5 −9 9
↓
3

Then, 3 ∗ −3 = −9:

−3 3 5 −9 9
↓ −9
3 −4
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Next, −4 ∗ −3 = +12:

−3 3 5 −9 9
↓ −9 12
3 −4 3

And this example also has a zero remainder:

−3 3 5 −9 9
↓ −9 12 −9
3 −4 3 0

The answer here is 3x2 − 4x+ 3:

3x3 + 5x2 − 9x+ 9

x+ 3
= 3x2 − 4x+ 3

and

3x3 + 5x2 − 9x+ 9 = (x+ 3)(3x2 − 4x+ 3)

Let’s look at an example that is a little bit different.

Example

Use Synthetic Division to divide:

6x4 + x3 + 9x2 + x− 2

2x+ 1

Synthetic Division is set up to handle problems in which we are dividing by
1x− a. Clearly, this is not the case in this example, however we can work around
this. Another way of looking at setting up the synthetic division is that we use
the number that is the solution to x− a = 0. When we divided by x− 5, we used
+5. When we were dividing by x+ 3, we used −3. So, if we’re going to divide by
2x+ 1, we’ll use −1

2
in the Synthetic Division:

−1
2

6 1 9 1 −2
↓
6
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Then, we proceed as usual:

−1
2

6 1 9 1 −2
↓ −3 1 −5 2
6 −2 10 −4 0

Notice that, again, we have a zero remainder. Also, notice that each coefficient
in our answer has a common factor of 2, which was the coefficient of the x in
2x+ 1, which we orginally were going to divide by. What we’ve done here is not
division by 2x+ 1, but division by x+ 1

2
.

So, in the end, our work tells us that:

6x4 + x3 + 9x2 + x− 2

x+ 1
2

= 6x3 − 2x2 + 10x− 4

and

6x4 + x3 + 9x2 + x− 2 =

(
x+

1

2

)
(6x3 − 2x2 + 10x− 4)

Notice that if we factor out the common factor of 2 from our answer, we can
multiply it back into the x+ 1

2
and get an answer for our original problem:

6x4 + x3 + 9x2 + x− 2 =

(
x+

1

2

)
2(3x3 − x2 + 5x− 2)

= (2x+ 1)(3x3 − x2 + 5x− 2)

This means that:

6x4 + x3 + 9x2 + x− 2

2x+ 1
= 3x3 − x2 + 5x− 2
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Another thing to understand about Synthetic Division is that if there is a missing
power of x, then you should include a zero as the coefficient of that power.

Example

Use Synthetic Division to divide:

x3 + 4x− 6

x− 2

Since there is no x2 term in the polynomial we’re divding into, we’ll enter a zero
as the coefficient for that term:

2 1 0 4 −6
↓
1

And then proceed as usual:

2 1 0 4 −6
↓ 2 4 16
1 2 8 10

So the answer for this problem is x2 + 2x+ 8 R : 10.
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Exercises 2.7

Use synthetic division to find the quotient in each problem.

1)
x3 − 8x2 + 5x+ 50

x− 5
2)

x3 + 5x2 − x− 14

x+ 2

3)
x3 + 12x2 + 34x− 7

x+ 7
4)

x3 − 10x2 + 23x− 6

x− 3

5)
x4 − 15x2 + 10x+ 24

x+ 4
6)

x4 − 3x3 + 4x2 − 36

x− 3

7)
x4 − 2x3 − x+ 10

x− 2
8)

x4 − 16x2 − 5x− 24

x+ 4

9)
2x4 − x3 + 2x− 1

2x− 1
10)

3x4 + x3 − 3x+ 1

3x+ 1

11)
3x4 − 8x3 + 9x2 − 2x− 2

3x+ 1
12)

6x4 − 7x3 + 5x2 − 17x+ 10

3x− 2

13)
2x3 + 7x2 + 6x− 5

2x− 1
14)

3x4 − x3 − 21x2 − 11x+ 6

3x− 1
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2.8 Roots and Factorization of Polynomials

In this section we will use some of the skills we have seen in previous sections
in order to find all the roots of a polynomial function (both real and complex)
and also factor the polynomial as the product of prime factors with integer coef-
ficients.

Example

Find all real and complex roots for the given equation. Express the given polyno-
mial as the product of prime factors with integer coefficients.

2x3 − 3x2 + 2x− 8 = 0

First we’ll graph the polynomial to see if we can find any real roots from the
graph:

−4 −2 2 4

−20

−10

10

20

x = 2

We can see that there is a root at x = 2. This means that the polynomial will
have a factor of (x − 2). We can use Synthetic Division to find any other factors.
Because x = 2 is a root, we should get a zero remainder:

2 2 −3 2 −8
↓ 4 2 8
2 1 4 0
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So, now we know that 2x3 − 3x2 + 2x − 8 = (x − 2)(2x2 + x + 4). To finish the
problem, we can set each factor equal to zero and find the roots:

2x3 − 32 + 2x− 8 = 0

(x− 2)(2x2 + x+ 4) = 0

x− 2 = 0 2x2 + x+ 4 = 0

x = 2 x ≈ −0.25± 1.392i

Let’s look at an example that has more than one real root:

Example

Find all real and complex roots for the given equation. Express the given polyno-
mial as the product of prime factors with integer coefficients.

3x4 + 5x3 − 45x2 + 19x− 30 = 0

First we’ll graph the polynomial to see if we can find any real roots from the
graph:

−8 −6 −4 −2 2 4 6 8

−400

−200

200

400

x = 3x = −5



134 CHAPTER 2. POLYNOMIAL AND RATIONAL FUNCTIONS

We can see roots at x = −5, 3, which means that (x+5) and (x−3) are both factors
of this polynomial. We’ll need to divide by both of these factors to break down
the polynomial. First, we divide by (x− 3):

3 3 5 −45 19 −30
↓ 9 42 −9 30
3 14 −3 10 0

And then by (x+ 5):

3 3 5 −45 19 −30
↓ 9 42 −9 30

−5 3 14 −3 10 0
↓ −15 5 −10
3 −1 2 0

Now we know that 3x4 + 5x3 − 45x2 + 19x− 30 = (x+ 5)(x− 3)(3x2 − x+ 2) and
so, to finish the problem:

3x4 + 5x3 − 45x2 + 19x− 30 = 0

(x+ 5)(x− 3)(3x2 − x+ 2) = 0

x+ 5 = 0 x− 3 = 0 3x2 − x+ 2 = 0

x = −5 x = 3 x ≈ 1
6
± 0.799i

Next, let’s look at an example where there is a root that is not a whole number:

Example

Find all real and complex roots for the given equation. Express the given polyno-
mial as the product of prime factors with integer coefficients.

3x3 + x2 + 17x+ 28 = 0
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First we’ll graph the polynomial to see if we can find any real roots from the
graph:

−4 −2 2 4

−40

−20

20

40

x = −1.3

We can see in the graph that this polynomial has a root at x = −4
3
. That means

that the polynomial must have a factor of 3x + 4. We can use Synthetic Division
to find the other factor for this polynomial. Because we know that x = −4

3
is a

root, we should get a zero remainder:

−4
3

3 1 17 28
↓ −4 4 −28
3 −3 21 0

Notice that, because the root we used was a fraction, there is a common factor of
3 in the answer to our Synthetic Division. We should factor this out to obtain the
answer:

(x+ 4
3
)(3x2 − 3x+ 21) = (3x+ 4)(x2 − x+ 7)

So, this means that:

3x3 + x2 + 17x+ 28 = 0

(3x+ 4)(x2 − x+ 7) = 0

3x+ 4 = 0 x2 − x+ 7 = 0

x = −4

3
x ≈ 0.5± 2.598i



136 CHAPTER 2. POLYNOMIAL AND RATIONAL FUNCTIONS

Exercises 2.8

Find all real and complex roots for the given equation. Express the given polyno-
mial as the product of prime factors with integer coefficients.

Set #1

1) x4 − 3x3 + 5x2 − x− 10 = 0

2) 3x3 − 5x2 + 2x− 8 = 0

3) 2x4 − 5x3 + x2 + 4x− 4 = 0

4) x4 + x3 − 3x2 − 17x− 30 = 0

5) x4 − 9x3 + 21x2 + 21x− 130 = 0

6) x4 − 7x3 + 14x2 − 38x− 60 = 0

7) x5 − 9x4 + 31x3 − 49x2 + 36x− 10 = 0

8) x4 + 4x3 + 2x2 + 12x+ 45 = 0
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9) x4 − 6x3 + 12x2 − 10x+ 3 = 0

10) x4 − 6x3 + 13x2 − 24x+ 36 = 0

11) x5 − 3x4 + 12x3 − 28x2 + 27x− 9 = 0

12) x5 + 2x4 − 3x3 − 3x2 + 2x+ 1 = 0

Set #2

13) 15x3 − 7x2 + 13x+ 3 = 0

14) x4 − 5x3 + 3x2 − 11x− 20 = 0

15) 6x3 + 13x2 + 12x+ 4 = 0

16) 6x3 − 5x2 + 5x− 2 = 0

17) 4x4 + 20x3 + 29x2 + 10x− 15 = 0
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18) 3x4 − 4x3 + 10x2 + 12x− 5 = 0

19) 2x4 − 3x3 − 6x2 − 8x− 3 = 0

20) 12x4 − 53x3 − 31x2 − 19x− 5 = 0

21) 12x4 + 4x3 + x2 − 3x− 2 = 0

22) 3x4 + 13x3 − 26x− 40 = 0



Chapter 3

Exponents and Logarithms

In this chapter, we will examine concepts that are related to exponential, logarith-
mic and logistic relationships. In the first section, we will look at how to approach
these problems from a graphical perspective. In the subsequent sections, we will
examine the methods necessary to work with these problems algebraically.

3.1 Exponential and Logistic Applications

There are a variety of different types of mathematical relationships. The simplest
mathematical relationship is the additive relationship. This is a situation in which
the value of one quantity is always a certain amount more (or less) than another
quantity. A good example of an additive relationship is an age relationship. In
an age relationship, the age of the older person is always the same amount more
than the age of the younger person. If the older person is five years older, then
the age of the older person (y) will always be equal to the age of the younger
person (x) plus five: y = x+ 5.

Another type of additive relationship is seen where two quantities add up to a
constant value. Let’s say there is a board whose length is 20 inches. If we cut
it into two pieces, with one piece being 6 inches, then the other piece will be 14
inches. If one piece is 9 inches, then the other will be 11 inches. If one piece is x
inches, then the other piece (y) will be 20− x: y = 20− x or x+ y = 20.

139
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The next type of mathematical relationshp is a multiplicative relationship. This
represents a situation in which one quantity is always a multiple of the other
quantity. This is commonly seen in proportional relationships. If a recipe for a
cake calls for 2 cups of flour, then, if we want to make 3 cakes, we’ll need 6 cups
of flour. The amount of flour (y) is always two times the number of cakes we
want to make (x): y = 2x.

If a recipe for a batch of cookies (with 20 cookies per batch) calls for 1.5 cups
of sugar, then three batches would require 4.5 cups of sugar. The amount of
sugar required (y) is always the number of batches (x) times 1.5: y = 1.5x. If we
wanted to represent this relationship based on the number of cookies instead of
the number of batches, we would need to adjust the formula. Given that there are
20 cookies per batch, we could adjust our formula so that we first calculate the
number of batches from the number of cookies and then multiply by 1.5. If the
number of cookies is x and the amount of sugar is y, then y = 1.5 ∗ x

20
or y = 3

40
x.

The next type of mathematical relationship is the polynomial relationship. In this
type of relationship, one quantity is related to a power of another quantity. A
good example of this type of relationship involves gravity. As Galileo discov-
ered in the 16th century, the distance that an object falls after it is dropped is not
proportional to the time that it has been falling. Rather, it is proportional to the
square of the time. The table below shows this type of relationship.

t d

1 16

2 64

3 144

4 256

After one second, it looks like the distance will always be sixteen times the time
the object has been falling. However, after two seconds, we can see that this
relationship no longer is true. That’s because this relationship is a polynomial
relationship in which the distance an object has fallen (d) is proportional to the
square of the time it has been falling (t): d = 16t2.
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Exponential Relationships

The next type of relationship is the focus of this chapter - the exponential relation-
ship. In this situation, the rate of change of a quantity is proportional to the size
of that quantity. This relationship can be explored in more depth in an integral
calculus course, but we will discuss the basics here.

In a linear or proportional relationship, the slope, or rate of change, is constant.
For example, in the equation y = 3x+1, the slope is always three, no matter what
the values of x and y are. In an exponential relationship, the rate of change (also
called ”y prime” or y′) is proportional to the value of y. In this case, we say that
y′ = k ∗ y.

This is what is known as a differential equation. This is an equation in which the
variable and its rate of change are related. Through the processes of differential
and integral calculus, we can solve the equation above y′ = k ∗ y as:

y = Aekt

In the equation above, A is the value of y at time t = 0, k is a constant that
determines how fast the quantity y increases or decreases and t plays the role
of the independent variable (as x often does) and represents the time that has
passed. If k is positive, then the quantity y is growing because its rate of change
is positive. If k is negative, then the quantity y is decreasing because the rate of
change is negative.

The quantity represented by e in the above equation is a mathematical constant
(like π) that is often used to represent exponential relationships. The best way to
understand the value of e and what it represents is directly related to fundamen-
tal questions from differential and integral calculus.

Differential Calculus is concerned primarily with the question of slopes. We dis-
cussed earlier that a linear relationship has a constant slope. Polynomial and ex-
ponential relationships have slopes that depend on the value of x and/or y. This
is what makes them curves rather than lines. If we consider the slopes of some
different exponential relationships, we can see one aspect of where the value for
e comes from.
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Consider the graphs of the following relationships:

y = 1.5x

y = 2x

y = 3x

y = 10x

Let’s look at the graphs for these functions:
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y = 1.5x
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y = 2x
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y = 3x
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y = 10x

We can see that these graphs demonstrate slightly different behavior and differ-
ent x and y values. One thing that they all have in common is that they all pass
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through the point (0, 1) on the graph. This is because 1.50 = 1, 20 = 1, 30 = 1 and
100 = 1. Therefore the point where x is 0 and y is 1 is on all four of the graphs.

Although all four of the graphs pass through the point (0, 1), they each do this
in a different way. Let’s look at the slope of a line tangent to each curve at the
point (0, 1). This is the straight line that touches the curve at the point (0, 1), but
nowhere else:
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y = 3x
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y = 10x

We can see that the slopes of these tangent lines are all different. In the case of
y = 2x, the slope of the tangent line at (0, 1) is about 0.7, while for the graph of
y = 3x, the slope of the tangent line at (0, 1) is about 1.1.
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As mathematicians examined these graphs during the 17th and 18th centuries,
they began to question what the value of the base ”b” should be in the equation
y = bx so that the slope of the tangent line at the point (0, 1) would be equal to
exactly 1. The answer was e ≈ 2.71828.

Another way to derive the value of e uses Integral Calculus. Integral Calculus is
often concerned with finding the area under a curve. This process can then be
generalized and used to make many other types of calculations that are similar
to finding area.

Consider the graph of the curve y =
1

x
:

−1 1 2 3 4 5

−1

1

2

y = 1
x

We can delineate borders on the x values and determine the area of the resulting
region using the techniques of calculus:

0.6 0.8 1 1.2 1.4 1.6 1.8 2
−0.2

0.2

0.4

0.6

0.8

1 y = 1
x

A ≈ 0.693

1 1.5 2 2.5 3
−0.2

0.2

0.4

0.6

0.8

1

y = 1
x

A ≈ 1.0986



3.1. EXPONENTIAL AND LOGISTIC APPLICATIONS 145

These values for the area under the curve are actually the same values as those
for the slope of the tangent line in the previous graphs. If you ask the question,
”Where should you draw the second vertical line so that the area under the curve
is equal to exactly 1?” then just like the slope question, the answer is e ≈ 2.71828.

This is how the value of e was determined and why it is used to represent these
exponential relationships.

Logistic Relationships

Let’s consider the graph of y = 2x:
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If we extend the x-axis out further past x = 4, we would see that the y values for
this relationship will grow very quickly, as they continue doubling.
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400
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800

1,000
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Some phenomena in the natural world exhibit behavior similar to the growth
of this function. However, in the natural world, few, if any, things can grow
unconstrained. Most growth of any kind is limited by the resources that fuel
the growth. Populations often grow exponentially for a period of time, however,
populations are dependent on natural resources to continue growing. As a result,
the simple exponential function is only useful for modeling real-world behavior
if the x-values are limited.

It was this problem with the simple exponential function that led French mathe-
matician Pierre Verhulst to slightly adjust the differential equation that gives rise
to the exponential function to make it more realistic.

The original differential equation said:

y′ = k ∗ y

This says that the rate of growth of y is always directly proportional to the value
of y. In other words the larger a population gets, the faster it will grow - forever.
Verhulst changed this to say:

y′ = k ∗ y(1− y
N

)

This is the defining relationship for the Logistic function. Notice that when values
of y are small, this is essentially the same as the simple exponential. If y is small,
then the (1− y

N
) term will be very close to 1 and will produce behavior very much

like the simple exponential.

The N in the formula is a theoretical “maximum population.” As the value of y
approaches this maximum value, y

N
will approach 1 and (1− y

N
) will get smaller

and smaller. As it gets smaller, the factor of (1 − y
N

) will slow down the growth
of the function to model the pressure that is put on the resources that are driving
the growth.

The solution of the Logistic equation is quite complicated and results in a stan-
dard form of:

y =
N

1 + be−kt
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The graph for a sample logistic relationship is shown below:

−40 −20 20 40
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1

y =
1

1 + e−0.1t

The “lazy-s” shape is characteristic of the logistic function. In the early stages,
the relationship shows growth very similar to the simple exponential function,
but, as the function grows larger, the growth decreases and the function values
stabilize. The maximum y value of N is always the horizontal asymptote for the
logistic function.

Negative Exponential Relationships

The Logistic function is very useful for modeling phenomena from the natural
world. Although the simple exponential function is somewhat limited in model-
ing natural phenomena, the negative exponential is quite useful. Looking back to
the graph of y = 2x:
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If we turn the graph around by changing x to −x in the formula, then we will be
working with the decaying tail of the graph:
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y = 2−x

Let’s zoom in on the portion of the graph in the Quadrant I:
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1.5

y = 2−x

The behavior shown in the graph is quite useful for modeling radioactive decay,
processes of heating and cooling, and assimilation of medication in the blood-
stream. Let’s look at an example.
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Example

If a patient is injected with 150 micrograms of medication, the amount of medi-
cation still in the bloodstream after t hours is given by the function:

A(t) = 150e−0.12t

a) Find the amount of medication in the bloodstream after 3 hours.

Round your answer to the nearest 100th.

b) How long will it take for the amount of medication to reach 60 micrograms?

Round your answer to the nearest 10th of an hour.

In this section we will focus on solving these problems using the graphing cal-
culator. In later sections, we will cover processes that can be used to solve these
problems algebraically. It is helpful to understand both methods of solution.

First, let’s graph the function given in the problem:

5 10 15 20

50

100

150

y = 150e−0.12x

We can directly calculate the answer for part (a) by plugging the value of 3 for t
or we can use the table in the graphing calculator to find this value:
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x y

0 150

1 133.04

2 117.99

3 104.65

We can see that after 3 hours there are approximately 104.65 micrograms of med-
ication in the patient’s bloodstream.

To answer part (b) graphically, we’ll graph the original function along with the
horizontal line y = 60. When we find the intersection of these two graphs, we’ll
know how long it takes for there to be 60 micrograms of medication in the pa-
tient’s bloodstream:

5 10 15 20

50

100

150

(7.636, 60)

Here, we can see that it would take about 7.6 hours (or about 7 hours 36 minutes),
for there to be 60 micrograms of medication in the patient’s bloodstream.
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Example

The deer population on a nature preserve can be modeled using the equation:

y =
8000

1 + 9e−0.2t

y indicates the number of deer living in the nature preserve and t represents the
number of years that have passed since the initial population of deer were estab-
lished there.

a) How many deer were in the initial population?

b) What is the deer population after 10 years?

Round your answer to the nearest whole number.

c) How long does it take for the population to reach 5,000?

Round your answer to the nearest 10th of a year.

Parts (a) and (b) can both be answered from a table of values for the function.
Before we look at the table, let’s consider the question in Part (a). The problem is
asking what the initial population of deer was. The means that we’re looking to
find out what y is when t = 0.

Let’s see what happens when we plug zero in for t in the formula:

y =
8000

1 + 9e−0.2∗0
=

8000

1 + 9e0

=
8000

1 + 9 ∗ 1
=

8000

10

= 800
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Let’s look at the table of values:

t y

0 800

5 1855.8

10 3606.8

To the nearest whole number, the deer population after 10 years is 3,607.

In Part (c), we’ll need to graph a horizontal line at y = 5, 000 and find the inter-
section.

5 10 15 20 25 30

2,000

4,000

6,000

8,000

(13.54, 5000)

To the nearest 10th, it takes about 13.5 years for the deer population to reach
5,000.
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Exercises 3.1

1) Medication in the bloodstream

The function A(t) = 200e−0.014t gives the amount of medication, in milligrams, in
a patient’s bloodstream t minutes after the medication has been injected.

a) Find the amount of medication in the bloodstream after 45 minutes.

Round your answer to the nearest milligram.

b) How long will it take for the amount of medication to reach 50 milligrams?

Round your answer to the nearest minute.

2) Medication in the bloodstream

The function D(t) = 50e−0.2t gives the amount of medication, in milligrams, in a
patient’s bloodstream t hours after the medication has been injected.

a) Find the amount of medication in the bloodstream after 3 hours.

Round your answer to the nearest milligram.

b) How long will it take for the amount of medication to reach 10 milligrams?

Round your answer to the nearest minute.
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3) Fish Population

The number of bass in a lake can be modeled using the given equation:

P (t) =
3600

1 + 7e−0.05t

where t is the number of months that have passed since the lake was stocked with
bass. In each question below, round your answer to the nearest whole number.

a) How many bass were in the lake immediately after it was stocked?

b) How many bass were in the lake 1 year after it was stocked?

4) Bird Population

The population of a certain species of bird is limited by the type of habitat re-
quired for nesting. The population can be modeled using the following equation:

P (t) =
5600

0.5 + 27.5e−0.044t

where t is the number of years. In each question below, round your answer to the
nearest whole number.

a) Find the initial bird population.

b) What is the population 100 years later?
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5) A Temperature Model

A cup of coffee is heated to 180◦F and placed in a room that maintains a temper-
ature of 65◦F . The temperature of the coffee after t minutes have passed is given
by:

F (t) = 65 + 115e−0.042t

a) Find the temperature of the coffee 10 minutes after it is placed in the room.

Round your answer to the nearest degree.

b) When will the temperature of the coffee be 100◦F ?

Round your answer to the nearest tenth of a minute.

6) A Temperature Model

Soup at a temperature of 170◦F is poured into a bowl in a room that maintains
a constant temperature. The temperature of the soup decreases according to the
model given by:

F (t) = 75 + 95e−0.12t

where t is the number of minutes that have passed since the soup was poured.

a) What is the temperature of the soup after 2 minutes?

Round your answer to the nearest 10th of a degree.

b) A certain customer prefers that the soup be cooled to 110◦F .

How long will this take?

Round your answer to the nearest 10th of a minute.
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7) Radioactive Decay

A radioactive substance decays in such a way that the amount of mass remaining
after t days is given by the equation:

m(t) = 13e−0.015t

where the amount is measured in kilograms.

a) Find the mass at time t = 0.

b) How much of the mass remains after 45 days?

c) How long does it take for there to be 5 kg. left?

8) Radioactive Decay

Radioactive iodine is used by doctors as a tracer in diagnosing certain thyroid
gland disorders. This type of iodine decays in such a way that the mass remaining
after t days is given by:

m(t) = 6e−0.087t

where the amount is measured in grams.

a) Find the mass at time t = 0.

b) How much remains after 20 days?

c) How long does it take for there to be 2 grams left?

Round your answer to the nearest tenth of a day.
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9) Fish population

The function:

P (t) =
12

1 + e−t

gives the size of a fish population in thousands at time t, measured in years.

a) Find the initial population of fish at time t = 0.

Find the population of fish after 2 years, time t = 2 .

b) How long will it take for the population to be 10,000?

What appears to be the maximum population for this particular model?

10) Fish population

The function:

P (t) =
70

1 + 2e−t

gives the size of a fish population in thousands at time t, measured in years.

a) Find the initial population of fish at time t = 0.

Find the population of fish after 1.5 years, t = 1.5.

b) How long will it take for the population to be 50,000?

What appears to be the maximum population for this particular model?



158 CHAPTER 3. EXPONENTS AND LOGARITHMS

11) Fish population

The function:

P (t) =
20

1− 0.4e−0.35t

gives the size of a fish population in thousands at time t, measured in years.

a) Find the initial population of fish at time t = 0.

Find the population of fish after 5 years, time t = 5.

b) How long will it take for the population to be 25,000?

What happens to this population over time?

12) Fish population

The function:

P (t) =
10

1− 0.73e−0.08t

gives the size of a fish population in thousands at time t, measured in years.

a) Find the initial population of fish at time t = 0.

Find the population of fish after 5 years, time t = 5.

b) How long will it take for the population to be 25,000?

What happens to this population over time?
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13) Continuous Mixing

A 100 gallon tank of pure water has salt water with 0.5 lb per gallon added to
it at a rate of 2 gallons per minute. The brine solution is mixed thoroughly and
drained at rate of 2 gallons per minute.

The equation for how many pounds of salt are in the tank at time t is given by:

y = 50− 50e−0.02t

where y is measured in pounds and t is measured in minutes.

a) How many pounds of salt are in the tank after 20 minutes?

b) How long does it take for there to be 30 lbs of salt in the tank?

Round your answer to the nearest tenth of a minute.

14) Continuous Mixing

A 20 gallon tank of pure water has salt water with 0.4 lb per gallon of salt added
to it at a rate of 3 gallons per minute. The brine solution is mixed thoroughly and
drained at rate of 3 gallons per minute.

The equation for how many pounds of salt are in the tank at time t is given by:

y = 8− 8e−0.15t

where y is measured in pounds and t is measured in minutes.

a) How many pounds of salt are in the tank after 15 minutes?

b) How long does it take for there to be 6 lbs of salt in the tank?

Round your answer to the nearest tenth of a minute.
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15) Continuous Mixing

A tank contains 200 gallons of a 2% solution of HCl. A 5% solution of HCl is
added at 5 gallons per minute. The well mixed solution is being drained at 5
gallons per minute.

The amount of HCl in the tank at any given time t in minutes is:

y = 10− 6e−0.025t

a) How many gallons of HCl are in the tank at t = 25 minutes?

b) When does the concentration of HCl in the solution reach 4%?

16) Continuous Mixing

A tank contains 100 gallons of salt water which contains a total of 25 lbs of salt.
Salt water containing 0.4 lbs per gallon is added to the tank at a rate of 5 gallons
per minute and the well-mixed solution is drained at the same rate.

The amount of salt in pounds in the tank at any given time t in minutes is:

y = 40− 15e−0.05t

a) How many pounds of salt are in the tank at t = 20 minutes?

b) How long does it take for there to be 30 lbs of salt in the tank?
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3.2 Logarithmic Notation

A Logarithm is an exponent. In the early 1600’s, the Scottish mathematician John
Napier devised a method of expressing numbers in terms of their powers of ten
in order simplify calculation. Since the advent of digital calculators, the methods
of calculation using logarithms have become obsolete, however the concept of
logarithms continues to be used in many area of mathematics.

The fundamental idea of logarithmic notation is that it is simply a restatement of
an exponential relationship. The definition of a logarithm says:

logbN = x→ bx = N

The notation above would be read as ”log to the base b of N equals x means that
b to the x power equals N .” In this section we will focus mainly on becoming
familiar with this notation. In later sections, we will learn to use this process to
solve equations.

Example

Express the given statement using exponential notation:

log2 32 = 5

If log2 32 = 5, then 25 = 32.

Example

Express the given statement using exponential notation:

log7 4 ≈ 0.7124

If log7 4 ≈ 0.7124, then 70.7124 ≈ 4

If the logarithm notation appears without a base, it is usually assumed that the
base should be 10.
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Example

Express the given statement using exponential notation:

log 100 = 2

If log 100 = 2, then 102 = 100

The notation lnN = x is typically used to indicate a logrithm to the base e. This
means that:

lnN = x→ ex = N

Example

Express the given statement using exponential notation:

ln 15 ≈ 2.708

If ln 15 ≈ 2.708, then e2.708 ≈ 15

In some cases, we would want to change an exponential statement into a loga-
rithmic statement.

Exmple

Express the given statement using logarithmic notation:

124 = 20, 736

If 124 = 20, 736 then log12 20, 736 = 4
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Example

Express the given statement using logarithmic notation:

102.5 ≈ 316.23

If 102.5 ≈ 316.23 then log 316.23 ≈ 2.5

Example

Express the given statement using logarithmic notation:

e6 ≈ 403.4

If e6 ≈ 403.4, then ln 403.4 ≈ 6
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Exercises 3.2

Rewrite each of the following using exponential notation.

1) t = log5 9 2) h = log7 10 3) log5 25 = 2

4) log6 6 = 1 5) log 0.1 = −1 6) log 0.01 = −2

7) log 7 ≈ 0.845 8) log 3 ≈ 0.4771 9) log2 35 ≈ 5.13

10) log12 50 ≈ 1.5743 11) ln 0.25 ≈ −1.3863 12) ln 0.989 ≈ −0.0111

Rewrite each of the following using logarithmic notation.

13) 102 = 100 14) 104 = 10, 000 15) 4−5 =
1

1024

16) 5−3 =
1

125
17) 16

3
4 = 8 18) 8

1
3 = 2

19) 101.3 ≈ 20 20) 100.301 = 2 21) e3 ≈ 20.0855

22) e2 ≈ 7.3891 23) e−4 ≈ 0.0183 24) e−2 ≈ 0.1353
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3.3 Solving Exponential Equations

Because of the fact that logarithms are exponents, the rules for working with
logarithms are similar to those that govern exponential expressions. One very
helpful rule of equality for working with logarithms is related to the exponential
rule for raising a power to a power. We recall one of the rules of exponents as:

(bx)y = bx∗y

in other words

(52)4 = (52)(52)(52)(52) = 52∗4 = 58

In logarithmic notation, this rule works out as:

logbM
p = p ∗ logbM

The reason for this comes from the rule for exponents. Let’s say that logbM = x.

Then:

logbM = x

this means that

bx = M

and

(bx)p = (M)p

so

bp∗x = Mp
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Now, we come back to the question of logbM
p =?. This expression (logbM

p) is
asking the question ”What power do we raise b to in order to get an answer of
Mp? The result on the previous page shows that:

bpx = Mp

This means that we must raise b to the px power to get an answer of Mp. Remem-
ber that x = logbM . This means that:

bpx = Mp

so

logbM
p = px = p ∗ logbM

This statement of equality is useful if we are trying to solve equations in which
the variable is an exponent.

Example

Solve for x.

4x = 53

We start by taking a logarithm on both of the equation. Just as we can add to both
sides of an equation, or multiply on both sides of an equation, or raise both sides
of an equation to a power, we can also take the logarithm of both sides. So long
as two quantities are equal, then their logarithms will also be equal.

4x = 53

log 4x = log 53

x log 4 = log 53

x =
log 53

log 4
≈ 2.864
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Since the log base 10 and log base e are both programmed into most calculators,
these are the most commonly used bases for logarithms.

Example

Solve for x.

52x+3 = 17

We start this problem in the same fashion, but this time we will use a logarithm
to the base e:

52x+3 = 17

ln 52x+3 = ln 17

(2x+ 3) ln 5 = ln 17

There are several possibilities for finishing the problem from this point. We will
focus on two of them that are the most useful for solving more complex problems.
First, we will distribute the ln 5 into the parentheses and then get the x by itself.

(2x+ 3) ln 5 = ln 17

x ∗ 2 ln 5 + 3 ln 5 = ln 17

−3 ln 5 = −3 ln 5

x ∗ 2 ln 5 = ln 17− 3 ln 5

x =
ln 17− 3 ln 5

2 ln 5
≈ −0.620

And we can check the answer by plugging it back in:

52∗(−0.0620)+3 ≈ 51.760 ≈ 16.9897 ≈ 17
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We can also approximate the logarithms in the problem and solve for an approx-
imate answer:

(2x+ 3) ln 5 = ln 17

x ∗ 2 ln 5 + 3 ln 5 = ln 17

3.2189x+ 4.8283 ≈ 2.8332

−4.8283 ≈ −4.8283

3.2189x ≈ −1.9951

x ≈ −0.620

If you use the method of approximating, it’s important to make a good approxi-
mation. At least 4-5 decimal places are necessary for an accurate answer.

Let’s look at an example that has variables on both sides of the equation:

Example

Solve for x.

43x = 92x−1

We’ll use log base 10 in this problem.

43x = 92x−1

log 43x = log 92x−1

3x ∗ log 4 = (2x− 1) log 9

x ∗ 3 log 4 = x ∗ 2 log 9− log 9
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If we collect like terms, we’ll end up with:

x ∗ 3 log 4 = x ∗ 2 log 9− log 9

log 9 = x ∗ 2 log 9− x ∗ 3 log 4

At this point, if we want to get the x by itself, we need to factor out the x on the
right-hand side:

log 9 = x ∗ 2 log 9− x ∗ 3 log 4

log 9 = x(2 log 9− 3 log 4)

Then divide on both sides by the coefficient in parentheses:

log 9

2 log 9− 3 log 4
=
x((((

(((
((

(2 log 9− 3 log 4)

(((
((((

(
2 log 9− 3 log 4

log 9

2 log 9− 3 log 4
= x

9.327 ≈ x

Again, we can check our answer by plugging it back into the equation:

43∗9.327 ≈ 427.981 ≈ 7.0184 ∗ 1016

92∗9.327−1 ≈ 917.654 ≈ 7.0177 ∗ 1016
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We could also have solved this equation by approximating the logarithms in the
beginning.

43x = 92x−1

log 43x = log 92x−1

3x ∗ log 4 = (2x− 1) log 9

3x(0.60206) ≈ (2x− 1)0.95424

1.80618x ≈ 1.9085x− 0.95424

0.95424 ≈ 0.10232x

9.326 ≈ x

This answer is less accurate than the other approximation (9.326036 vs. 9.327424).
The accuracy of an answer depends upon the original approximations for the
logarithms.
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Exercises 3.3

Solve for the indicated variable.

1) 2x = 5 2) 2x = 9 3) 3x = 7

4) 3x = 20 5) 2x+1 = 6 6) 7x+1 = 41

7) 5x+1 = 36 8) 8x−2 = 6 9) 42x+3 = 50

10) 4x+2 = 5x 11) 52x+1 = 9 12) 6x+4 = 10x

13) 7y+1 = 3y 14) 2x+1 = 3x−2 15) 6y+2 = 5y

16) 7x−3 = 3x+1 17) 62x+1 = 5x+2 18) 91−x = 12x+1

19) 52x−1 = 3x−3 20) 3x−2 = 42x+1 21) 83x−2 = 9x+2

22) 22x−3 = 5−x−1 23) 103x+2 = 5x+3 24) 53x = 3x+4

25) 3x+4 = 21−3x 26) 42x+3 = 5x−2 27) 32−3x = 42x+1

28) 22x−3 = 5x−2
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3.4 Solving Logarithmic Equations

In the previous section, we took exponential equations and used the properties of
logarithms to restate them as logarithmic equations. In this section, we will take
logarithmic equations and use properties of logarithms to restate them as expo-
nential equations. In the previous section, we used the property of logarithms
that said logbM

p = p logbM . In this section, we will make use of two additional
properties of logarithms:

logb(M ∗N) = logbM + logbN and logb
M
N

= logbM − logbN

Just as our previous property of logarithms was simply a restatement of the rules
of expoenents, these two properties of logarithms depend on the rules of expo-
nents as well. Since we’re interested in logbM and logbN , let’s restate these in
terms of exponents:

If logbM = x then bx = M and if logbN = y then by = N

The properties of logarithms we’re interested in justifying have to do with M ∗N
and M

N
, so let’s look at those expressions in terms of exponents:

M ∗N = bx ∗ by = bx+y

and

M

N
=
bx

by
= bx−y

If we’re interested in logb(M ∗ N), then we’re asking the question ”What power
do we raise b to in order to get M ∗ N?” We can see above that raising b to the
x + y power gives us M ∗ N . Since x = logbM and y = logbN then x + y =
logbM + logbN , so:

logb(M ∗N) = x+ y = logbM + logbN

Likewise, if we’re interested in logb
M
N

, we’re asking the question ”What power
do we raise b to in order to get M

N
?” Since raising b to the x− y power gives us M

N

and x− y = logbM − logbN , then:

logb
M
N

= x− y = logbM − logbN
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Let’s look at an example to see how we’ll use this to solve equations:

Example

Solve for x.

log2 x+ log2(x− 4) = 2

The first thing we can do here is to combine the two logarithmic statements into
one. Since logb(M ∗N) = logbM+logbN , then log2 x+log2(x−4) = log2

[
x(x−4)

]
.

log2 x+ log2(x− 4) = 2

log2

[
x(x− 4)

]
= 2

Then we’ll restate the resulting logarithmic relationship as an exponential rela-
tionship:

22 = x(x− 4)

4 = x2 − 4x

0 = x2 − 4x− 4

4.828,−0.828 ≈ x

Most textbooks reject answers that result in taking the logarithm of a negative
number, such as would be the case for x ≈ −0.828. However, the logarithms of
negative numbers result in complex valued answers, rather than an undefined
quantity. For that reason, in this text, we will include all answers.
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If a problem involves a difference of logarithms, we can use the other property of
logarithms introduced in this section.

Example

Solve for x.

log(5x− 1)− log(x− 2) = 2

Again, our first step is to restate the difference of logarithms using the property
logb

M
N

= logbM − logbN :

log(5x− 1)− log(x− 2) = 2

log

[
5x− 1

x− 2

]
= 2

We’re working with a logarithm in base 10 in this problem, so in our next step
we’ll say:

log

[
5x− 1

x− 2

]
= 2

5x− 1

x− 2
= 102

Then multiply on both sides by x− 2:

102 =
5x− 1

x− 2

(x− 2) ∗ 100 =
5x− 1

���
�(x− 2)
∗����(x− 2)
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And, solve for x

100x− 200 = 5x− 1

95x = 199

x =
199

95

In some equations, all of the terms are stated using logartihms. These equations
often come out in a form that says logb x = logb y. If this is the case, we can then
conclude that x = y.

It seems reasonable that if the exponent we raise b to in order to get x is the same
exponent that we raise b to in order to get y, then x and y are the same thing.

Assume:

logb x = logb y

Let’s say that logb x = a = logb y

then

ba = x and ba = y

if both x and y are equal to ba, then x = y

Example

Solve for x.

log5(4− x) = log5(x+ 8) + log5(2x+ 13)
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First, let’s use the properties of logarithms to restate the equation so that there is
only one logarithm on each side.

log5(4− x) = log5(x+ 8) + log5(2x+ 13)

log5(4− x) = log5

[
(x+ 8)(2x+ 13)

]
Then, we’ll use the property of logarithms we just discussed:

If logb x = logb y

then

x = y

log5(4− x) = log5

[
(x+ 8)(2x+ 13)

]
4− x = (x+ 8)(2x+ 13)

4− x = 2x2 + 29x+ 104

0 = 2x2 + 30x+ 100

0 = 2(x+ 5)(x+ 10)

−5,−10 = x
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Exercises 3.4

Solve for the indicated variable in each equation.

1) log3 5 + log3 x = 2 2) log4 x+ log4 5 = 1

3) log2 x = 2 + log2 3 4) log5 x = 2 + log5 3

5) log3 x+ log3(x− 8) = 2 6) log6 x+ log6(x− 5) = 1

7) log(3x+ 2) = log(x− 4) + 1 8) log(x− 1)− log x = −0.5

9) log2 a+ log2(a+ 2) = 3 10) log3 x+ log3(x− 2) = 1

11) log2 y − log2(y − 2) = 3 12) log2 x− log2(x+ 3) = 2

13) log3 x+ log3(x+ 4) = 2 14) log4 u+ log4(u+ 1) = 1

15) log 5 + log x = log 6 16) lnx+ ln 4 = ln 2

17) log7 x− log7 12 = log7 2 18) log 2− log x = log 8
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19) log3 x− log3(x− 2) = log3 4 20) log6 2− log6(x− 2) = log6 9

21) log4 x− log4(x− 4) = log4(x− 6)

22) log9(2x+ 7)− log9(x− 1) = log9(x− 7)

23) 2 log2 x = log2(2x− 1)

24) 2 log4 y = log4(y + 2)

25) 2 log(x− 3)− 3 log 2 = 1

26) 2 log5 7− log5(x+ 1) = log5(2x− 5)



3.5. APPLICATIONS OF THE NEGATIVE EXPONENTIAL FUNCTION 179

3.5 Applications of the Negative Exponential Func-
tion

At the beginning of Chapter 3, we worked with application problems and solved
them using the graphing calculator. In this section, we will revisit some of these
application problems and use the solution methods discussed in the previous
sections to solve these problems algebraically.

Radioactive Decay

The decay of a radioactive element into its non-radioactive form occurs following
a time line dictated by the ”half-life” of the element. The half-life is the amount
of time that it takes for half of the existing radioactive material to decay to its
non-radioactive form.

Consider the equation:

A(t) = A0e
−kt

where A(t) is the amount of material left at time t, A0 is the amount present at
t = 0, and k is a constant that can be determined based on the half-life of the
material.

If we know that after one half-life, there will 50% of the radioactive material re-
maining, then we can say that:

0.5A0 = A0e
−kth

where th is the half-life. To solve this equation for k, we would first divide on
both sides by A0:

0.5A0

A0

=
A0e

−kth

A0

0.5 = e−kth
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Then take the natural logarithm of both sides and bring the exponent down in
front of the expression as a coefficient:

0.5 = e−kth

ln(0.5) = ln(e−kth)

ln(0.5) = −kth ∗ ln(e)

ln(0.5) = −kth ∗ 1

− ln(0.5)

th
= k

The value of k can then be used in the equation A(t) = A0e
−kt to determine the

amount of material left after any time t.

Example

The isotope Gold-198 (198Au) is a type of gold sometimes used in medical appli-
cations and has a half-life of 2.7 days. How much of a 65 gram sample of 198Au
will be left after 6 days? How long would it take for there to be 10 grams left?

If we know the half-life, we can calculate the value of the constant k.

k = − ln(0.5)

th

k = − ln(0.5)

2.7

k ≈ 0.2567
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Now that we know the value of k, we can directly calculate the amount of 198Au
left after 6 days:

A(t) = A0e
−kt

= 65e−0.2567∗6

≈ 13.932

So, approximately 13.932 grams of 198Au would be left after 6 days.

In order to calculate how long it takes for 10 grams of 198Au to be left, we’ll need
to solve for t in the equation A(t) = A0e

−kt with A(t) = 10:

A(t) = A0e
−kt

10 = 65e−0.2567t

First, we’ll divide on both sides by 65:

10

65
=
��65e−0.2567t

��65

10

65
= e−0.2567t

Then, take the natural logarithm on both sides:

ln

(
10

65

)
= ln

(
e−0.2567t

)
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We’ll calculate an approximate value for ln
(
10
65

)
and restate the right hand side of

the equation using the properties of logarithms:

−1.872 ≈ −0.2567t ∗ ln e

−1.872 ≈ −0.2567t ∗ 1

−1.872 ≈ −0.2567t

7.3 ≈ t

So, it would take about 7.3 days for the 65 grams of 198Au to decay to 10 grams.

Newton’s Law of Cooling

Newton’s Law of Cooling states that the temperature of an object can be deter-
mined using the equation:

T = Ta + Ce−kt

where Ta is the ambient temperature of the surrounding environment. The values
of the constants C and k can often be calculated from given information.

Example

A bottle of soda at room temperature (72◦F) is placed in a refrigerator where the
temperature is 44◦F.

After half an hour, the soda has cooled to 61◦F. What is the temperature of the
soda after another half hour?

First, since the soda is placed in the refrigerator where the ambient temperature is
44◦F, then Ta = 44. We also know that at t = 0, T = 72, which is the temperature of
the soda can when it is first put in the refrigerator. This will allow us to calculate
the constant C.
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T = Ta + Ce−kt

72 = 44 + Ce−k∗0

72 = 44 + Ce0 = 44 + C ∗ 1

72 = 44 + C

28 = C

Now we know that Ta = 44 andC = 28. We can use the other piece of information
from the problem to calculate the value of k. The problem states that after 30
minutes the soda has cooled off to 61◦F. That means that when t = 30 (or t = 0.5
depending on which units you choose) the temperature T will be 61◦F. We can
then set up the equation to reflect this and calculate the vlaue of k:

T = 44 + 28e−kt

61 = 44 + 28e−k∗30

First, we’ll subtract 44 on both sides and divide by 28:

61 = 44 + 28e−k∗30

17 = 28e−30k

17

28
= e−30k
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Now, we’ll take the natural logarithm on both sides to bring the−30k down from
the exponent:

ln

(
17

28

)
= ln

(
e−30k

)

ln

(
17

28

)
= −30k ∗ ln e

−0.499 ≈ −30k

0.01663 ≈ k

Now, we have the full formula for calculating temperature in this scenario:

T = 44 + 28e−0.01663t

To find out what happens after 60 minutes, we can simply plug in 60 for t:

T = 44 + 28e−0.01663t

T = 44 + 28e−0.01663∗60

T = 44 + 28e−0.9978

T ≈ 44 + 28 ∗ 0.3687

T ≈ 44 + 10.3236 ≈ 54.3◦F
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Exercises 3.5

1) If the half-life of radioactive cesium-137 is 30 years, find the value of k in the
equation A(t) = A0e

−kt.

a) Given a 10 gram sample of cesium-137, how much will remain after 80
years?

b) How long will it take for only 2 grams of cesium-137 to remain?

2) The half-life for radioactive thorium-234 is about 25 days. Use this to find
the value of k in the equation A(t) = A0e

−kt.

a) How much of a 40 gram sample will remain after 60 days?

b) After how long will only 10 grams of thorium-234 remain?

3) Given a sample of strontium-90, it is known that after 18 years there are
32mg remaining and after 65 years there are 10mg remaining. Use this informa-
tion to find out how much strontium-90 was in the sample to begin with, and also
determine the half-life of strontium-90.

4) A 12 mg sample of radioactive polonium decays to 7.26 mg in 100 days.

a) What is the half-life of polonium?

b) How much of the 12 mg sample remains after 180 days?
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5) A hot bowl of soup is served at a dinner party. It starts to cool according to
Newton’s Law of Cooling so that its temperature at time t is given by:

y = 65 + 145e−0.05t

where t is measured in minutes and y is measured in degrees Fahrenheit.

a) What is the initial temperature of the soup?

b) What is the temperature after 10 minutes?

c) After how long will the temperature be 100◦?

6) Newton’s Law of Cooling is used in homicide investigations to determine
the time of death. The normal body temperature is 98.6◦F. Immediately following
death, the body begins to cool. This process uses Newton’s Law of Cooling:

y = Ta + Ce−kt

If the ambient temperature is 60◦, and the body has cooled to 72◦F after 6 hours,
use this information to determine the value of k in the equation.

7) The police discover the body of a murder victim. Critical to solving the
crime is determining when the murder was committed. The coroner arrives at
the murder scene at 12 Noon. She immediately takes the temperature of the body
and finds it to be 94.6◦F. She then takes the temperature 1.5 hours later and finds
it to be 93.4◦F. If the temperature of the room is 70◦F, when was the murder com-
mitted?
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8) A roasted turkey is taken from the oven when its temperature has reached
185◦F and is placed on a table in a room where the temperature is 75◦F.

a) If the temperature of the turkey is 150◦F after 30 minutes, what is its tem-
perature after 45 minutes?

b) When will the turkey cool off to 100◦F?

9) A kettle full of water is brought to a boil in a room with an ambient temper-
ature of 20◦C. After 15 minutes, the temperature of the water has decreased from
100◦C to 75◦C. Find an equation using Newton’s Law of Cooling to represent to
temperature at time t. Find the temperature of the water after 25 minutes.

10) A cup of coffee with a temperature of 105◦F is placed in a freezer with a
temperature of 0◦F. After 5 minutes, the temperature of the coffee is 70◦F. Find an
equation using Newton’s Law of Cooling to represent to temperature at time t.
What will the temperature be in 10 minutes?



188 CHAPTER 3. EXPONENTS AND LOGARITHMS



Chapter 4

Functions

A function is generally defined as a relation in which each x value corresponds to
one and only one y value. This assigning of only one y value to each x is known
as “univalence.” The univalence requirement makes some manipulations in cal-
culus easier to work with and can be important in certain applications, but many
important relations (such as the hyperbola, circle and ellipse) are not univalent
and thus not functions.

A function typically describes a relationship between two sets. In our consid-
eration of functions these two sets will typically be real or complex numbers.
Functions are usually defined in one of several ways. They can be defined by (1)
a graph, (2) an algebraic relationship, (3) a rule or (4) a table of values. More than
one of these methods can be used to describe the same function.

4.1 Function Notation

The notation for a function is generally the f(x) notation. In learning about
graphing in algebra we typically use the x and y notation, that is: y = 6x − 1.
In function notation, the dependent variable y is replaced by the notation f(x) :

f(x) = 6x− 1

Function values for particular values of the independent variable x can be found

189
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by substituting the appropriate x value into the formula.

f(9) = 6(9)− 1 = 53

f(9) = 53
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Exercises 4.1

Find each of the following values for the given functions:

f(0) f(−1) f(3) f(1
2
) f(x+ 2) f(x+ h)

1) f(x) = 2x2 − 3x+ 1 2) f(x) = 5x2 + x− 7

3) f(x) =
x

x2 − 1
4) f(x) =

x+ 3

x2 + 1
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4.2 Domain and Range of a Function

The analysis of the behavior of functions addresses questions of when the func-
tion is increasing or decreasing, whether and where it has maximum or minimum
values, where it crosses the x or y axis, and which values of x and y are to be in-
cluded in the function.

The set of values available for the x, or independent variable is called the Domain
of the function. The set of corresponding y values is called the Range of the
function.

The linear function mentioned above f(x) = 6x − 1 has a domain of all real
numbers and a range of all real numbers, x ∈ R and y ∈ R . On the other hand,
the function f(x) = x2 has a domain of all real numbers, x ∈ R, but its range is
limited to the positive real numbers, y ≥ 0.

Considerations of the domain of a function typically refer to restrictions on which
x values will generate real number values for y. The most common restrictions
occur with the use of square root functions or rational functions.

The domain of the function f(x) =
√
x− 7 would be the set of x ≥ 7, so that no

negative values are permitted under the square root. This secures the necessary
real values for y. The range for this function is y ≥ 0.

The domain of the function f(x) =
x

2x− 3
would be x ∈ R (all real numbers),

but x 6= 3
2
, thus avoiding a zero denominator which is an undefined value. The

range for this function would be y ∈ R (all real numbers), but y 6= 1
2
, due to the

horizontal asymptote at y = 1
2
.

The questions of domain and range become more interesting when considered
in relation to functions defined by graphs, or in applications. In an application
involving perimeter in which the perimeter of a rectangle is given as 50 feet, we
know that

2`+ 2w = 50

Rewriting this as a function of w, we can say that

` = f(w) = 25− w
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In this function relating the length and width based on a given perimeter, we can
say the domain of the function is 0 < w < 25. The width must be greater than 0,
but less than 25, otherwise there would not be a rectangle. The same is true for
the range or possible set of values for the length 0 < ` < 25.
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Exercises 4.2

Find the domain and range for each of the following functions:

1) f(x) =
√

2x+ 1 2) f(x) =
√

3x− 5

3)
x

x+ 9
4) f(x) =

x+ 2

2x− 3

For the following graphs, assume that the endpoints for the domain and range
are whole numbers.

5)

−10 −8 −6 −4 −2 2 4

−10

−8

−6

−4

−2

2

4

6
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6)

−12−10 −8 −6 −4 −2 2 4

−4

−2

2

4

6

8

10

12

14

7)

−10−8 −6 −4 −2 2 4 6

−4

−2

2

4

6

8
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8)

−10 −8 −6 −4 −2 2 4 6 8

−4

−2

2

4

6

8

10

12
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4.3 Maximum and Minimum Values

Finding the maximum and minimum values of a function can be very useful
in applications. This is usually referred to as “optimization.” Later on, we will
examine the use of optimization in application problems. For now, we will use
graphs to find the maximum and minimum values of the function.

In the example below, the maximum function value in the region shown is 100.
This occurs where x = 2.5.

1 2 3 4 5 6

25

50

75

100

In the graph below, the function shows a maximum value of 5 at x = −1 and a
minimum value of −27 at x = 3.

−3 −2 −1 1 2 3 4 5

−25

−20

−15

−10

−5

5
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We can use the graphing calculator to find maximum and minimum values. In
calculus the maximum and minimum values can be found algebraically.

The maximum and minimum values are also helpful in determining where the
function is increasing or decreasing. In the previous example:

−3 −2 −1 1 2 3 4 5

−25

−20

−15

−10

−5

5

The function is increasing between x = −2 and x = −1, then again from x = 3 to
x = 4. So we would say that the intervals in which the function is increasing are
−2 ≤ x < −1 and 3 < x ≤ 4 or, using interval notation, [−2,−1) ∪ (3, 4].

The interval in which the function is decreasing is −1 < x < 3 or (−1, 3).
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Exercises 4.3

Determine the domain and range for each function given. Then determine the
maximum and minimum values for the function and the intervals in which the
function is increasing or decreasing.

1)

−7 −6 −5 −4 −3 −2 −1 1 2 3

−20

−16

−12

−8

−4

4

8

12

16

20

2)

−1 1 2 3 4 5 6 7 8 9

−4

−2

2

4

6

8

10

12

14
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3)

−4 −3 −2 −1 1 2 3

−8

−4

4

8

12

16

20

4)

−2 −1 1 2 3 4 5
−4

4

8

12

16

20

24

28
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4.4 Transformations

There are three major types of transformation that we will consider:

1) Horizontal and vertical shifts

2) Reflections over the x or y-axis

3) Horizontal and vertical stretches

If we take a given function, let’s say f(x) = x, then this has the graph we see
below - a straight line with a slope of 1 and a y-intercept of 0. If we add to the
function f(x) + 6 = x + 6, then this will add 6 to all of the y-values which shifts
the graph 6 places up.

f(x) = x g(x) = f(x) + 6 = x+ 6

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8
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Vertical Shifts

So, if we have a general function f(x) that is described by a graph, we can deter-
mine a graph for f(x) + k, where k is some number that will either shift f(x) up
(if k > 0) or down (if k < 0).

For example, consider the following graph for f(x):

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

Then, if we want a graph for f(x)− 2, just shift all the y-values down 2 places:

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

This is a standard vertical shift transformation of a function.
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Horizontal Shifts

A function may also be shifted horizontally by adding or subtracting a number
inside the parentheses.

If we start with our original function f(x):

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

Then the transformation f(x − 2) will shift the graph horizontally, except that it
will move in the opposite direction of the sign. The f(x − 2) shift will move the
graph 2 places to the right whereas a shift of f(x+2) will move the graph 2 places
to the left.

The reason why this happens will be more clear if we look at a table of values for
the function:

x f(x)

−6 0

−3 6

1 6

3 4

8 4
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Now, if, instead of f(x), we want f(x − 2), then we add another column to the
table:

x x− 2 f(x− 2)

−4 −6 0

−1 −3 6

3 1 6

1 3 4

6 8 4

Notice that to have the same y-value as the original graph, we must go 2 places
to the right so that after we subtract 2 from the x-value, we arrive back at the
original x-value. So the graph of f(x− 2) will look like this:

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

Notice how the values in the graph match up with the values in the table.
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Reflections

Negating the x or y values of a function will have the effect of reflecting the func-
tion over the y or x axis. If we consider the function f(x) - the same one we used
in the previous examples:

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

Then the graph of y = −f(x) will be reflected over the x-axis. The negative sign
in front of the function negates all of the y values, reflecting them over the x-axis.
Lets look at this in a table of values:

x f(x) −f(x)

−6 0 0

−3 6 −6

1 6 −6

3 4 −4

8 4 −4
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So the graph would look like this:

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

On the other hand, if we negate the x-variable (f(−x)), then the function values
previously associated with the positive values of x would be associated with the
negative values of x and vice versa. This would reflect the function over the
y-axis.

If we again consider our original function and a table of values:

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8
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In the table:

x −x f(−x)

−8 8 4

−3 3 4

−1 1 6

3 −3 6

6 −6 0

And the graph would be reflected over the y-axis:

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8
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Stretching and compressing graphs

The last type of transformation we will examine is that of stretching or compress-
ing a graph by multiplying inside or outside the parentheses. Starting with our
familiar example function y = f(x):

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

If we multiply the function by a constant outside of the parentheses: y = 2f(x),
then this will have the effect of multiplying all of the y values by 2. In the table:

x f(x) 2f(x)

−6 0 0

−3 6 12

1 6 12

3 4 8

8 4 8
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The graph of y = 2f(x) would look like this:

−8 −6 −4 −2 2 4 6 8

−8
−6
−4
−2

2
4
6
8

10
12
14

In a similar way, multiplying by a number less than 1 would compress the graph.
The graph for y = 1

2
f(x) is below:

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8
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Multiplying inside the parentheses affects the x variables.

If we consider the function y = f(2x), then this will have the effect of compressing
the graph along the x-axis:

x 2x f(2x)

−3 −6 0

−1.5 −3 6

0.5 1 6

1.5 3 4

4 8 4

Notice how each x value had to be cut in half so that when we multiplied it by 2,
we ended up with the original x value. The graph would look like this:

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8
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Multiplying inside the parentheses by a number less than one would stretch the
graph out.

x 1
2
x f

(
1
2
x
)

−12 −6 0

−6 −3 6

2 1 6

6 3 4

16 8 4

−12 −8 −4 4 8 12 16

−8

−6

−4

−2

2

4

6

8

In these examples, we have considered only one transformation at a time. In the
exercises you will need to consider the effect of several transformations at once.
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Exercises 4.4

1) Match each of the functions on the graph to the appropriate transformation
described below.

a) f(x− 4) b) f(x) + 3

c) −3f(x) d) 2f(x+ 6)

f(x) #2

#3

#4

#1
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2) Match each of the descriptions with the appropriate function transforma-
tion.

a) y = f(x− 1) 1) Shift left one unit

b) y = f(x)− 1 2) Reflect over x-axis, then shift left one unit

c) y = f(x) + 1 3) Shift right one unit

d) y = f(x+ 1) 4) Reflect over x-axis, then shift up one unit

e) y = f(−x) + 1 5) Reflect over x-axis, then shift down one unit

f) y = f(−x)− 1 6) Shift down one unit

g) y = −f(x) + 1 7) Reflect over x-axis, reflect over y-axis, then shift up one unit

h) y = −f(x+ 1) 8) Shift left one unit, reflect over y-axis, then shift up one unit

i) y = −f(x)− 1) 9) Shift up one unit

j) y = f(−x+ 1) 10) Reflect over y-axis, then shift up one unit

k) y = −f(−x) 11) Reflect over y-axis, then shift down one unit
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3) Match each of the descriptions with the appropriate function transforma-
tion.

a) y = f(x+ 2) + 3 1) Shift left 2 units, then shift down 3 units

b) y = f(x+ 3) + 2 2) Shift left 3 units, then shift up 2 units

c) y = f(x− 2) + 3 3) Shift right 3 units, then shift up 2 units

d) y = f(x− 2)− 3 4) Shift left 3 units, then shift down 2 units

e) y = f(x+ 2)− 3 5) Shift right 3 units, then shift down 2 units

f) y = f(x− 3) + 2 6) Reflect over the y-axis, then shift up 2 units

g) y = f(x− 3)− 2 7) Reflect over x-axis, then shift right 2 units

h) y = f(x+ 3)− 2 8) Reflect over x-axis, then shift left 2 units

i) y = −f(x+ 2) 9) Shift left 2 units, then reflect over the y-axis

j) y = −f(x− 2) 10) Shift right 2 units, then shift up 3 units

k) y = f(2− x) 11) Shift left 2 units, then shift up 3 units

`) y = f(−x) + 2 12) Shift right 2 units, then shift down 3 units
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Apply the transformations indicated for each function.

4) f(x) 5) g(x)

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8(−8, 7) (−4, 7)

(−2, 4) (6, 4)

−8 −4 4 8 12 16

−8

−6

−4

−2

2

4

6

8

(−8,−2)

(5, 6)

(18,−2)

a) f(x− 3) a) g(x)− 3

b) −f(x) + 2 b) −g(x)− 1

c) 1
2
f(x− 1) c) 2g(x+ 2)

d) f(−x) + 1 d) g(2x)− 1
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6) f(x) 7) g(x)

−4 −3 −2 −1 1 2

1

2

3

4

5

6

(−4, 3)

(−2, 6)

(0, 3)

−4 −3 −2 −1 1 2

−10

−5

5

10

15

20
(−2, 20)

(−3, 9) (2, 4)

(1,−7)

a) f(x) + 2 a) g(x− 2)

b) −f(x− 1) b) −g(x) + 1

c) f(x− 1)− 3 c) 2g(x− 1)

d) 1
3
f(x) + 4 d) 1

2
g(x)− 3
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4.5 Toolbox Functions

Learning the general shapes of some common function families can be helpful
in analyzing various problems. This can also be helpful in applying the ideas of
statistical regression. Statistical regression typically gathers a collection of data
points and tries to fit a mathematical function to the data points. Choosing the
type of function that will best fit the data is an important step in determining a
suitable regression function.

Below is an example of a Linear Regression:

2 4 6 8 10

2

4

6

8

10

The graph below is an example of a Quadratic Regression:

2 4 6 8 10

2

4

6

8

10
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Being familiar with the typical shape of the various function families can help in
analyzing experimental data.

The standard function families are:

Constant function: f(x) = c Linear function: y = f(x) = x

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

Absolute value function: f(x) = |x| Rational function: f(x) = 1
x

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8
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Quadratic function: f(x) = x2 Square root function: f(x) =
√
x
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Cubic function: f(x) = x3 Cube root function: f(x) = 3
√
x
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Some other function families that we won’t discuss are:

Exponential function: f(x) = ax

Logarithmic function: f(x) = logb x

Trigonometric function: f(x) = sin x
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Exercises 4.5

Sketch the graph for each of the following transformations.

1) f(x) = x2 + 3 2) f(x) = x2 − 4

3) f(x) = (x− 5)2 + 3 4) f(x) = (x+ 1)2 − 4

5) f(x) = |x| − 2 6) f(x) = |x|+ 5

7) f(x) = |x+ 3| − 2 8) f(x) = |x− 1|+ 5

Match each of the following equations to the appropriate graph.

9) f(x) =
√
x+ 4− 1 10) h(x) = x2 + x− 6

11) g(x) = |x+ 2| − 3 12) f(x) = 4x− x2

13) h(x) = −|x− 2|+ 1 14) g(x) = −3
5
x+ 2

15) h(x) = 3
√
x+ 4 16) f(x) = x3 − 3x2 + 3x+ 2

17) g(x) = − 3
√
x+ 2 18) h(x) = −

√
x+ 1− 3

19) f(x) = 5
4
x− 2 20) f(x) = 4x− x3
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a) b) c)
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d) e) f)
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4.6 Piecewise-defined Functions

In certain situations a numerical relationship may follow one pattern of behavior
for a while and then exhibit a different kind of behavior. In a situation such as
this, it is helpful to use what is known as a piecewise defined function - a function
that is defined in pieces.

f(x) =

{
x+ 2 x < 0

−x− 4 x ≥ 0

In the above example of a piecewise defined function, we see that the y values for
the negative values of x are defined differently than the y values for the positive
values of x.

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

Sometimes we are given a graph and need to write a piecewise description of the
function it describes.
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−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

(−6, 1)

(0, 7)

(2, 4)

(6, 0)

The piecewise function pictured above could be described as follows:

f(x) =


6 x < −6

x+ 7 −6 ≤ x < 2

−x+ 6 x ≥ 2
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Exercises 4.6

Sketch a graph for each of the piecewise functions described below.

1) f(x) =

{
1 x < 2

2 x ≥ 2
2) f(x) =

{
0 x ≤ 1

x− 1 x > 1

3) f(x) =

{
4 x < 2

x− 2 x ≥ 2
4) f(x) =

{
2− x x < −2

4 x ≥ −2

5) f(x) =

{
x x ≤ 1

x+ 1 x > 1
6) f(x) =

{
2x+ 3 x < −2

3− x x ≥ −2

7) f(x) =


−1 x < −1

1 −1 ≤ x ≤ 1

−1 x > 1

8) f(x) =


−1 x < −1

x −1 ≤ x ≤ 1

1 x > 1

9) f(x) =

{
x2 x < 0

x+ 1 x ≥ 0
10) f(x) =

{
x2 + 2x x ≤ −1

x x > −1

11) f(x) =

{
2 x ≤ −1

x2 x > −1
12) f(x) =

{
1− x2 x ≤ 2

x x > 2

13) f(x) =


4 x < −2

x2 −2 ≤ x ≤ 2

−x+ 6 x > 2

14) f(x) =


3x x < 0

x+ 1 0 ≤ x ≤ 2

(x− 2)2 x > 2



4.6. PIECEWISE-DEFINED FUNCTIONS 225

Write a piecewise description for each of the following graphs.

15) 16)

−4 −3 −2 −1 1 2 3 4
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4

(−1, 1) (2, 1)

−4 −3 −2 −1 1 2 3 4
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3
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(2, 1)

(−1,−1)

17) 18)
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(−1, 1)

(1, 1)

(2, 0)

−4 −3 −2 −1 1 2 3 4

−4
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1

2

3

4

(−1, 0)

(0, 2)

(1, 1)

(2, 2)
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4.7 Composite functions

Similar to the way in which we used transformations to analyze the equation of
a function, it is sometimes helpful to consider a given function as being several
functions of the variable combined together.

For example, instead of thinking of the function f(x) = (2x−7)3 as being a single
function, we can think of it as being two functions:

g(x) = 2x− 7

and

h(x) = x3

Then f(x) is the combination or “composition” of these two functions together.
The first function multiplies the variable by 2, and subtracts 7 from the result. The
second function takes this answer and raises it to the third power. The notation
for the composition of functions is an open circle: ◦.

In the example above we would say that the function f(x) = (2x− 7)3 is equiva-
lent to the composition h ◦ g(x) or h(g(x)). The order of function composition is
important. The function g ◦ h(x) would be equivalent to g(h(x)), which would be
equal to g(x3) = 2(x3)− 7 = 2x3 − 7.
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Exercises 4.7

Find f ◦ g(x) and g ◦ f(x) for each of the following problems.

1) f(x) = x2 2) f(x) = |x− 3|

g(x) = x− 1 g(x) = 2x+ 3

3) f(x) =
x

x− 2
4) f(x) = x3 − 1

g(x) =
x+ 3

x
g(x) =

1

x3 + 1

5) f(x) =
√
x+ 1 6) f(x) = 2x3 − 1

g(x) = x4 − 1 g(x) =
3

√
x+ 1

2

Find functions f(x) and g(x) so that the given function h(x) = f ◦ g(x)

7) h(x) = (3x+ 1)2 8) h(x) = (x2 − 2x)3

9) h(x) =
√

1− 4x 10) h(x) = 3
√
x2 − 1

11) h(x) =

(
x+ 1

x− 1

)2

12) h(x) =

(
1− 2x

1 + 2x

)3

13) h(x) = (3x2 − 1)−3 14) h(x) =
(
1 + 1

x

)−2

15) h(x) =

√
x

x− 1
16) h(x) =

3

√
x− 1

x
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17) h(x) =
√

(x2 − x− 1)3 18) h(x) = 3
√

(1− x4)2

19) h(x) =
2√

4− x2
20) h(x) = −

(
3

x− 1

)5

21) A spherical weather balloon is inflated so that the radius at time t is given
by the equation:

r = f(t) = 1
2
t+ 2

Assume that r is in meters and t is in seconds, with t = 0 corresponding to the
time the balloon begins to be inflated. If the volume of a sphere is given by the
formula:

v(r) = 4
3
πr3

Find V (f(t)) and use this to compute the time at which the volume of the balloon
is 36π m3.
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4.8 Inverse Functions

An inverse function undoes the action of the original function. So the inverse of a
function that squared a number would be a function that square rooted a number.
In general, an inverse function will take a y value from the original function and
return the x value that produced it.

We can see this in an application. Given an object with little or no air resistance
that is dropped from 100 ft., the function that describes its height as a function of
time would be:

H(t) = 100− 16t2

In this function, H(t) is the height of the object at time t. If we wanted to turn this
around so that it described the time for a given height, then we would want to
isolate the t variable. In this example, the graph of the function would change in
that the original independent variable - t, becomes the dependent variable in the
inverse function.

h = 100− 16t2

16t2 = 100− h

t2 =
100− h

16

t =

√
100− h

16

T (h) =

√
100− h

4
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Original function: H(t) = 100− 16t2

1 2 3 4

25

50

75

100
H(t)

t

Inverse function: T (h) =

√
100− h

4

25 50 75 100

1

2

3

4

T (h)

h

Notice that the graph of the function inverse is the original function reflected
over the line y = x, because an inverse function interchanges the independent
and dependent variables.
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Finding a formula for an inverse function can be more confusing when we con-
sider a standard function y = f(x). In our standard notation, x is always consid-
ered to be the independent variable and y is always considered to be the depen-
dent variable.

Notice in the example above that when we graphed the function and its inverse,
the label on the x axis changed from t to h. In a standard function, the x axis will
always be the x axis and the y axis will always be the y axis. To compensate for
this, when we find a function inverse for a function stated in terms of x and y,
we generally interchange the x and y terms so that x remains the independent
variable.

In our example, we had

H(t) = 100− 16t2

and found the inverse to be

T (h) =

√
100− h

4

If the original function had been stated in terms of x and y, then the process
would have looked like this:

f(x) = 100− 16x2

y = 100− 16x2

16x2 = 100− y

x2 =
100− y

16

x =

√
100− y

16

x =

√
100− y

4
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Then we switch the x and y variables to keep the x as the independent variable:

y = f−1(x) =

√
100− x

4

So,

f(x) = 100− 16x2

and

f−1(x) =

√
100− x

4
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Exercises 4.8

Given the function f(x) , find the inverse function f−1(x).

1) f(x) = 3x 2) f(x) = −4x

3) f(x) = 4x+ 2 4) f(x) = 1− 3x

5) f(x) = x3 − 1 6) f(x) = x3 + 1

7) f(x) = x2 + 4 8) f(x) = x2 + 9
x ≥ 4 x ≥ 9

9) f(x) =
4

x
10) f(x) = −3

x

11) f(x) =
1

x− 2
12) f(x) =

4

x+ 2

13) f(x) =
2

x+ 3
14) f(x) =

4

2− x

15) f(x) =
3x

x+ 2
16) f(x) = − 2x

x− 1

17) f(x) =
2x

3x− 1
18) f(x) = −3x+ 1

x
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19) f(x) =
3x+ 4

2x− 3
20) f(x) =

2x− 3

x+ 4

21) f(x) =
2x+ 3

x+ 2
22) f(x) = −3x+ 4

x− 2

Find the inverse function for each of the following applications.

23) The volume of water left in a 1000 gallon tank that drains in 40 minutes is
modeled by the equation:

V (t) = 1000
(
1− t

40

)2
Find T (v) - the function that tells you how long the water has been draining given
a particular volume left in the tank. Time is measured in minutes and the volume
is measured in gallons.

24) The speed of a vehicle in miles per hour that leaves skid marks d feet long
is modeled by the equation:

R(d) = 2
√

5d

FindD(r) - the function that tells you the stopping distance for a vehicle traveling
r miles per hour.

25) The period of a pendulum of length ` can be expressed by the relationship:

T (`) = 2π

√
`

980

Find the function L(t) that determines the length of a pendulum given its period.
Here the time is measured in seconds and the length is measured in centimeters.
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26) The volume of a sphere of radius r is given by the formula:

V (r) = 4
3
πr3

Find R(v) - the function that determines the radius of a sphere given its volume.
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4.9 Optimization

One of the major applications of differential calculus is optimization. This is the
process of finding maximum or minimum function values for a given relation-
ship. There are four typical types of problems that we will examine in this sec-
tion.

a) Analytic Optimization - these problems typically use the distance formula
to determine the closest point to a particular curve.

b) Geometry/Cost Optimization - these problems generally give a box or con-
tainer of a particular shape and ask either to determine the cheapest manufactur-
ing cost given a particular volume or to determine the greatest volume given a
particular cost.

c) Distance Optimization - these problems generally use two objects travelling
at right angles to each other and determine the maximum or minimum distance
between the objects.

d) Distance/Cost Optimization - these problems are usually focused on a situ-
ation in which two distances at right angles can be cut with a diagonal at a certain
point to minimize cost or time.

Analytic Optimization

d =
√

(x2 − x1)2 + (y2 − y1)2

1) Express the distance of a point (x, y) (in the first quadrant) on the graph of
the parabola y = x2 − 4 from the point (5, 2) as a function of x.

2) Use the graph of the distance function d(x) from Part I to determine the
point of the graph of the parabola y = x2 − 4 that is closest to the point (5, 2).

3) How far is this point from the point (5, 2)?
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−1 1 2 3 4 5 6 7 8

−4
−3
−2
−1

1
2
3
4
5
6

(x, y)

(5, 2)

1) Using the distance formula d =
√

(x2 − x1)2 + (y2 − y1)2, we can say that
any point on the curve y = x2 − 4 is a distance of:

d =
√

(x− 5)2 + (y − 2)2

from the point (5, 2). Because the question asks for this to be expressed as a
function of x, we should replace the y variable with an equivalent expression
involving x.

d =
√

(x− 5)2 + (x2 − 4− 2)2

or

d =
√

(x− 5)2 + (x2 − 6)2
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2) The graph of this distance function is below:

−4 −2 2 4 6

2

4

6

8

10

Note that in this graph, the x axis represents the x values from the original graph,
but the y axis in this graph is the distance of a point on the original curve from
the point (5, 2). We can see that this distance function has a clear minimum value
that occurs between x = 2 and x = 4. We can use the graphing calculator to find
this value - in Calculus we would use algebra to find this value.

−4 −2 2 4 6

2

4

6

8

10

(2.546, 2.501)

Both values indicated in the graph are approximate. The value x ≈ 2.546 indi-
cates the x value of the point on the original curve that is closest to the point (5, 2).
The y ≈ 2.501 indicates the distance of the point from the point (5, 2).

Since the x value of the point on the original curve that is closest to the point (5, 2)
is about 2.546, that means that the y value is:
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y = x2 − 4 ≈ 2.5462 − 4 ≈ 6.482− 4 ≈ 2.482

So the answer for Part 2 is that (2.546, 2.482) is closest point on the curve y = x2−4
to the point (5, 2).

3) We already determined the distance when we found the minimum point on
the distance graph. The distance is about 2.501 units.
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Exercises 4.9(a)

1) Given the function f(x) = 4 − x2, find x and y coordinates of the point on
the curve that is closest to the point (7, 3). How far away from the point (7, 3) is
the point you found?

2) Given the function f(x) = 6 − x2, find x and y coordinates of the point on
the curve that is closest to the point (1, 1). How far away from the point (1, 1) is
the point you found?

3) Given the function f(x) = x2 + 2x− 5, find x and y coordinates of the point
on the curve that is closest to the point (−2, 5). How far away from the point
(−2, 5) is the point you found?

4) Given the function f(x) = x2 − 5x+ 8, find x and y coordinates of the point
on the curve that is closest to the point (−2, 2). How far away from the point
(−2, 2) is the point you found?

5) Given the function f(x) = x3 − 4x2 + 2x+ 1, find x and y coordinates of the
point on the curve that is closest to the point (2, 1). How far away from the point
(2, 1) is the point you found?

6) Given the function f(x) = 2x3−5x−1, find x and y coordinates of the point
on the curve that is closest to the point (−2, 8). How far away from the point
(−2, 8) is the point you found?
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7) A rectangle has one corner in the 1st quadrant on the graph of y = 16 − x2,
one corner at the origin and the other two corners on the positive x axis and the
positive y axis.

−5−4−3−2−1 1 2 3 4 5
−4

4

8

12

16

(x, y)

(x, 0)(0, 0)

(0, y)

a) Express the area A of the rectangle as a function of x.

b) For what value of x is the area largest?

c) What is the maximum area?
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8) A rectangle is inscribed in a semi-circle of radius 5 so that two corners are
on the x axis and two corners are on the semi-circle.

−5−4−3−2−1 1 2 3 4 5

2

4

6
y =
√
25− x2

The formula for the graph of the semi-circle is y =
√

25− x2.

a) Express the area A of the rectangle as a function of x.

b) For what value of x is the area largest?

c) What is the maximum area?
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Geometry/Cost Optimization

A closed box with a square base is built from material that costs $1 per ft2 for the
four sides and the bottom and $5 per ft2 for the top. What are the dimensions of
the box of largest volume that can be constructed for $72?

There are two issues we are working with in this problem - the volume of the
box and the surface area of the box. The volume of the box is important because
that’s what we’re looking to maximize. The surface area of the box is important
because that’s what will control the cost of the box - notice that the costs are given
in terms of ft2 or square feet which is related to the surface area.

The box has a square base, but the height is some other dimension - h. So the
volume of the box will be length ∗ width ∗ height, but since the box has a square
base the length and width will be the same - we’ll call them x. From this we see
that the volume can be expressed as:

V = x ∗ x ∗ h = x2h

For the cost of the box, we need to know the surface area. Each side of the box
should be included - the base and the top have the same area (x2) because they
are both squares that are x units on each side. The four sides of the box are all
rectangles that are x by h units. That means each one has an area of x ∗ h - so all
four would be 4 ∗ x ∗ h or 4xh.

This makes the surface area of the box:

S = 2x2 + 4xh

The cost of the box then will be:

C = x2($1) + x2($5) + 4xh($1)

Here we see the one x2 is multiplied by $1, because the bottom will cost $1 per
ft2, but the other x2 is multiplied by $5, because the top costs $5 per ft2. The four
sides : 4xh is also multiplied by $1.
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So, our final formula for the cost is:

C = 6x2 + 4xh

but we already know that we want to spend $72 on the box, so we can say that:

72 = 6x2 + 4xh

This means that :

72− 6x2

4x
= h

or

18

x
− 1.5x = h

The reason why this is important is that it will allow us to express the volume of
the box in terms of x. Remember that the volume was:

V = x2h

so now we can see that:

V = x2
(

18

x
− 1.5x

)
or

V = 18x− 1.5x3
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The graph for this function is below:

−1 1 2 3 4

5

10

15

20

25 (2, 24)

We can see in the graph that the maximum volume given a cost of $72 will be
when the base of the box is 2 feet by 2 feet. The volume will be 24 ft3 and the
height will be 6 feet. So the answer to the question is 2 ft × 2 ft × 6 ft.
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Exercises 4.9(b)

1) A rectangular storage container with an open top has a volume of 10 m3.
The length of its base is twice the width. Material for the base costs $10 per
square meter. The sides require material that costs $6 per square meter. Find the
cost of materials for the cheapest such container.

2) A poster is to contain 108 cm2 of printed matter, with margins of 6 cm each
at the top and bottom of the page and 2 cm on each side of the page. What is the
minimum cost of the poster if it is to be made of material which costs $0.20 per
square centimeter?

3) If 1200 cm2 of material is available to make a box with a square base and an
open top, find the largest possible volume of the box.

4) A box with a square base and open top must have a volume of 32,000 cm3.
Find the dimensions of the box that minimizes the amount of material used.

5) A Norman window has the shape of a semi-circle on top of a rectangle so
that the diameter of the semi-circle is the same as the width of the rectangle.
Given that the perimeter of the window should be 30 ft, find the dimensions of
the window that will admit the greatest amount of sunlight (maximize the area).

6) A rectangular box with no top is to be made from material costing $0.50 per
square foot. The width of the base is 5 ft and it will have a volume of 6 ft3. What
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are the dimensions of the box that minimizes the cost? What is the cost of this
box?

Surface Area of a cylinder = 2πr2 + 2πrh

Volume of a cylinder = πr2h

7) A cylindrical can with a top will be made from 200 in2 of tin. What would
be the height and radius of the can of maximum volume?

8) A cylindrical can with a top will have a volume of 500 cm3. If the sides and
bottom cost $0.002 per square cm and the top costs $0.0035 per square cm, find
the dimensions of the least expensive can that will have a volume of 500 cm3.
How much does it cost to make this can?
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Distance Optimization

One ship is 10 miles due east of a buoy and is sailing due west, towards the buoy
at 12 mph. Another ship is 10 miles due south of the same buoy and sailing due
north, also towards the buoy at 7 mph.

a) Write a function that represents the distance between the two ships in terms
of t, the elapsed time in hours.

b) Graph the function and determine the value of t when the ships are closest
together. How far apart are the ships at this time?

Round the value of t to the nearest 100th of an hour.

Round the distance to the nearest tenth of a mile.

Here is a diagram that represents the problem:

Buoy 12 mph

Ship #1

Ship #2

10 miles

10 miles

7 mph
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The distance between the two ships is measured along the diagonal. Because this
creates a right triangle, we can use the Pythagorean Theorem to represent the
distance between the ships.

d

Buoy 12 mph

Ship #1

Ship #2

10 miles

10 miles

7 mph

In this case the legs of the right triangle begin as 10 miles, but they get shorter
as the ships travel closer to the buoy. For Ship #1, the distance decreases by 12
miles every hour - this means that the first ship will pass the buoy in less than one
hour. The distance between Ship #1 and the buoy can be represented as (10−12t),
where t is the number of hours spent traveling. Similarly, the distance between
Ship #2 and the buoy can be represented as (10− 7t).

So, using the Pythagorean Theorem, we can represent the distance between the
ships at any given time as:

d2 = (10− 7t)2 + (10− 12t)2

or

d =
√

(10− 7t)2 + (10− 12t)2
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The graph of this distance function looks like this:

−1 1 2 3 4

2

4

6

8

(0.98, 3.6)

The minimum point on the distance graph indicates the time at which the ships
are closest together. After traveling for 0.98 hours, the ships will be about 3.6
miles apart. They will then start moving farther apart.
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Exercises 4.9(c)

1) A runner starts running north from a given point running at 5 meters per
second. At the same time, a second runner heads east from the same starting
point, running at 8 meters per second. Represent the distance between the run-
ners as a function of t, the elapsed time. How long will it take for the runners to
be 150 meters apart?

2) A runner starts running north from a given point running at 10 meters per
second. At the same time, a second runner heads east from the same starting
point, running at 7 meters per second. Represent the distance between the run-
ners as a function of t, the elapsed time. How long will it take for the runners to
be 200 meters apart?

3) At 1 pm a bicycle is 9 miles due north of an ice cream shop and is traveling
south (towards the ice cream shop) at 15 mph. At the same time, another bike
rider is 2 miles east of the ice cream shop and is traveling east (away from the
ice cream shop) at 12 mph. Represent the distance between the bike riders at
any given time after 1pm. At what time is the distance between the riders at a
minimum? How far apart are they at this point?

4) A car leaves a four-way intersection at 9:15 am, traveling south at 70 mph.
At the same time, another car is 65 miles west of the intersection traveling east
at 55 mph. Express the distance between the two cars as a function of the time
since they left the intersection. At what time are the cars closest together? How
far apart from each other are they at this time?
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Distance/Time (or Cost) Optimization

At Noon, a dune buggy is in the desert at the point A indicated below. Point A is
40km from a paved road, which covers the 50 km between points B and D.

If the dune buggy can travel 45 kph in the desert and 75 kph on the road, where
is the best place for the driver to leave the desert and turn onto the road in order
to minimize the travel time?

What time does the driver arrive at Point D assuming they follow the path for
minimal travel time?

B D

A

50 km

40 km

One option is that the dune buggy can travel in a straight line from A to B (at 45
kph) and then travel on the paved road from B to D (at 75 kph). This would take
1.5 hrs.

Another option is for the dune buggy to travel straight from A to D at 45 kph.
The distance here is about 64 km (found using the Pythagorean Theorem). That
means the travel time would be about 1.423 hrs.

The optimization here says that, if the dune buggy were to travel part of the way
in the desert (along a diagonal) and the rest of the way on the paved road, then
there might be a minimal time that is shorter than the 1.423 hrs. it would take
going straight from A to D.
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x 50− xB D

A

C

50 km

40 km

If we express the distance between B and C as x, then the distance between C and
D will be 50 − x. The distance travelled in the desert is the distance from A to C
and this is found using the Pythagorean Theorem.

AC =
√

402 + x2 =
√
x2 + 1600

Since d = r ∗ t, then the time it takes travel a given distance will be
d

r
= t.

In the case of this problem the time to travel from A to C is:

t1 =

√
x2 + 1600

45

The time to travel from C to D is:

t2 =
50− x

75

So, the total travel time will be:

t = t1 + t2 =
x2 + 1600

45
+

50− x
75
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The graph of this function is below:

10 20 30 40

0.5

1

1.5

(30, 1.37)

It is hard to see, but there is a minimum for the graph where x = 30 and t = 1.37.
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Exercises 4.9(d)

1) A woman wants to swim to shore from a raft that is 50 meters offshore and
then run to the snack bar located 100 meters down the shoreline. The woman
swims 1 meter per second and runs at 5 meters per second. Where on the shore-
line should she swim to minimize her travel time?

Snack Bar

Raft

100 meters

50 meters

2) A man is in a boat on a lake 150 ft from shore. He wants to return to his
cabin. He is 400 ft down the shoreline from the cabin. He plans to row to shore,
leave the boat where he lands and then run the rest of the way to the cabin. If
he rows 7 ft per second and runs 15 ft per second, where should he beach the
rowboat to minimize the travel time?

Cabin

Boat

400 ft

150 ft
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3) A power station and a factory are located on opposite sides of a river that
is 60 meters wide. The factory is 200 meters from the point on the shore directly
opposite the power station. A power line must be laid between the power station
and the factory. It costs $25 per meter to run the cable in the river and $20 per
meter to run the cable on the land. How much of the cable should be laid in the
river and how much should be laid on land to minimize the cost? Where should
the cable come ashore? What is the minimum cost?

Factory

Power Station

200 meters

60 meters

4) A freshwater pipeline is being constructed to an island that is 6 miles from
the mainland. The water source is 20 miles down the coast from the point on the
shore that is closest to the island. The cost of laying the pipeline along the shore
is $8,000 per mile while the cost of laying the pipeline in the water is $12,000
per mile. How much of the pipeline should be laid in the water and how much
should be laid on land to minimize the cost? Where should the pipeline leave the
shore? What is the minimum cost?

Water Source

Island

20 miles

6 miles



Chapter 5

Conic Sections - Circle and Parabola

The conic sections as originally conceived in ancient Greece were “slices” of two
cones tip-to-tip. Slicing this figure in different ways produces each of the four
conic sections - Circle, Ellipse, Parabola and Hyperbola. This chapter will exam-
ine the Circle and the Parabola.

5.1 The Equation of the Circle

The equation for a circle is typically given as:

(x− h)2 + (y − k)2 = r2

In this equation, the point (h, k) represents the center of the circle and r represents
the radius of the circle. This equation is derived from the distance formula. The
definition of a circle is the locus (or collection) of points that are equidistant from
a given point (the center of the circle).

So, taking this definition, we can say that any point (x, y) that is on the circle
should be a distance of r from the center. Using the distance formula:

d =
√

(x1 − x2)2 + (y1 − y2)2

257
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Squaring both sides:

d2 = (x1 − x2)2 + (y1 − y2)2

In this situation, the distance d is the radius of the circle, r. This distance should
be the same for all points on the circle. So any point on the edge of the circle,
(x, y) should be a distance of r from the center of the circle, (h, k).

(x− h)2 + (y − k)2 = r2
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Exercises 5.1(a)

Determine the center and radius for each circle and sketch the graph of the circle.

1) (x− 3)2 + (y + 1)2 = 9 2) (x+ 4)2 + (y + 2)2 = 16

3) (x− 1)2 + (y − 6)2 = 20 4) (x− 2)2 + (y + 5)2 = 27

5) (x+ 7)2 + (y − 4)2 = 33 6) (x− 5)2 + (y − 3)2 = 50

Determine the equation for each circle. Each line represents a diameter.

7) 8)

2 4 6 8 10

−6

−4

2

4

(−1,−1)
(9,−1)

−10−8 −6 −4 −2 2 4 6
−2

2

4

6

8

10

12

(−8, 6) (4, 6)
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9) 10)

2 4 6 8 10

−2

2

4

(2, 1) (8, 1) −12 −10 −8 −6 −4 −2

−4

−2

2

(−9,−2) (−5,−2)
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Sometimes the equation for a circle is not given in the standard form. In this
situation, you need to put the equation into standard form and then determine
the center and radius. In order to put the equation into standard form you will
need to complete the square. Completing the square is a mathematical technique
that is often useful and is the basis for how the quadratic formula is derived.

Suppose that we are given the equation of a circle that is not in standard form:

x2 + 6x+ y2 + 10y + 25 = 0

We need to restate this relationship so that the center and radius can be easily de-
termined from the equation. In order to do this, we need to complete the square
for both the x and the y variables. There are a variety of methods for completing
the square I will demonstrate one of these below.

Take the original equation and move any term that doesn’t have a variable to the
other side:

x2 + 6x+ y2 + 10y = −25

Then open a space after the 6x and the 10y:

x2 + 6x + y2 + 10y = −25

The idea is that we want trinomial expressions for both x and y that are perfect
squares.

If we look at squaring binomial expressions, we can see that there is a pattern:

(x+ 3)2 = (x+ 3)(x+ 3) = x2 + 6x+ 9

(x+ 4)2 = (x+ 4)(x+ 4) = x2 + 8x+ 16

(x+ 5)2 = (x+ 5)(x+ 5) = x2 + 10x+ 25

(x+ 6)2 = (x+ 6)(x+ 6) = x2 + 12x+ 36
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We can see that if we have x2 + 6x, then this would correspond to (x + 3)(x + 3)
or (x + 3)2. But there’s a problem: (x + 3)2 is not equal to x2 + 6x. It’s equal to
x2 + 6x+ 9. We can’t just add a 9 to the x2 + 6x, but we can add a 9 to both sides.

x2 + 6x+ 9 + y2 + 10y = −25 + 9

Similarly, to complete the square on the y, we see that y2 + 10y corresponds to
(x+ 5)(x+ 5) or (x+ 5)2. Here, we would need to add 25 to both sides to create a
perfect square.

x2 + 6x+ 9 + y2 + 10y + 25 = −25 + 9 + 25

x2 + 6x+ 9 + y2 + 10y + 25 = 9

(x+ 3)2 + (y + 5)2 = 9

So, the center of the circle is (−3,−5) and the radius is 3.

Sometimes it is not so obvious what the values of h and k should be in completing
the square. Consider the equation below:

x2 + 20x+ y2 + 30y + 15 = 0

If we look back at the examples for squaring binomials, we can see the pattern
that relates the coefficient of the linear term to the values for h and k.

(x+ 3)2 = (x+ 3)(x+ 3) = x2 + 6x+ 9

(x+ 4)2 = (x+ 4)(x+ 4) = x2 + 8x+ 16

(x+ 5)2 = (x+ 5)(x+ 5) = x2 + 10x+ 25

(x+ 6)2 = (x+ 6)(x+ 6) = x2 + 12x+ 36

Notice that the coefficient of the linear term is always double the value of the
numeral in the parentheses and the constant term is always that number squared.
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(x+ n)2 = (x+ n)(x+ n) = x2 + 2nx+ n2

So, given the problem above, x2 + 20x+ y2 + 30y + 15 = 0, first we can move the
15 to the right hand side of the equation and then complete the squares on the x
and y variables.

x2 + 20x + y2 + 30y = −15

(x+?)2 + (y+?)2

x2 + 20x+ 100 + y2 + 30y + 225 = −15 + 100 + 225

(x+ 10)2 + (y + 15)2 = 310

We can now see that the center of the circle is at the point (−10,−15) and the
radius of the circle is

√
310 ≈ 17.6.
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Exercises 5.1(b)

Find the center and radius for each circle.

If the equation is not written in standard form, complete the square to rewrite the
equation in standard form: (x− h)2 + (y − k)2 = r2

1) x2 + y2 = 4 2) x2 + (y − 1)2 = 1

3) 2(x− 3)2 + 2y2 = 8 4) 3(x+ 1)2 + 3(y − 1)2 = 6

5) x2 + y2 − 2x− 4y − 4 = 0 6) x2 + y2 + 4x+ 2y − 20 = 0

7) x2 + y2 + 4x− 4y − 1 = 0 8) x2 + y2 − 6x+ 2y + 9 = 0

9) 2x2 + 2y2 + 8x+ 7 = 0 10) 3x2 + 3y2 − 12y = 0

11) 2x2 + 2y2 − 12x+ 8y − 24 = 0 12) 2x2 + 8x+ 2y2 = 0

13) x2 + y2 + 15x = 0 14) x2 + y2 + x+ y − 1
2

= 0

15) x2 + y2 − x+ 2y + 1 = 0 16) 3x2 + 3y2 − 6x+ 3y = 4
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17) 2x2 + 2y2 − 10x− 18y = 1 18) 2x2 + 2y2 − 5x+ y = 0

19) 9x2 + 9y2 + 9x− 27y + 1 = 0 20) 2x2 + 2y2 − 7x+ y = 0
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5.2 The Equation of the Parabola

The equation of the parabola is often given in a number of different forms. One
of the simplest of these forms is:

(x− h)2 = 4p(y − k)

A parabola is defined as the locus (or collection) of points equidistant from a
given point (the focus) and a given line (the directrix). Another important point
is the vertex or turning point of the parabola. If the equation of a parabola is
given in standard form then the vertex will be (h, k). The focus will be a distance
of p units from the vertex within the curve of the parabola and the directrix will
be a distance of p units from the vertex outside the curve of the parabola. This
value (p) is called the focal distance.

Vertex: (h, k)

Focus: (h, k + p)

Directrix: y = k − p

Any point on the curve of the parabola is equidistant from the focus (h, k + p)
and the directrix (h, k − p). Notice that the focus is a point and is identified with
the coordinates of the point while the directrix is a line and is identified with the
equation for that line.
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We can derive the standard equation for a parabola using the distance formula.

Vertex: (h, k)

Focus: (h, k + p)

Directrix: y = k − p

d

(x, y)d

In the picture above the two distances labeled “d” should be the same distance.
The vertical distance between the point (x, y) and the directrix y = k−p is simply
the difference between their y coordinates:

d = y − (k − p)

To find the distance between the point (x, y) and the focus (h, k + p) we need to
use the distance formula:

d =
√

(x− h)2 + (y − (k + p))2

Then we set the two distances equal to each other:√
(x− h)2 + (y − (k + p))2 = y − (k − p)

Square both sides:

(x− h)2 + (y − (k + p))2 = (y − (k − p))2

We’ll need to expand each side and collect like terms, but we’ll leave the (x− h)2

alone because it will appear in this form in the final equation.

(x− h)2 + y2 − 2(k + p)y + (k + p)2 = y2 − 2(k − p)y + (k − p)2
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The y2 terms cancel each other out:

(x− h)2 − 2(k + p)y + (k + p)2 = −2(k − p)y + (k − p)2

Now we’ll expand the k, p and y terms:

(x− h)2 − 2ky − 2py + k2 + 2pk + p2 = −2ky + 2py + k2 − 2pk + p2

Here, the k2 and p2 terms cancel out, as do the −2ky terms leaving:

(x− h)2 − 2py + 2pk = 2py − 2pk

If we collect everything excep the (x− h)2 on the right hand side, we’ll have:

(x− h)2 = 4py − 4pk

Factor out 4p and we have the standard equation for a parabola:

(x− h)2 = 4p(y − k)

This equation will be different depending on the orientation of the parabola. An
upward facing parabola will have this standard equation and both sides will have
the same sign. For example, (x − 5)2 = 12(y − 1) is an upward facing parabola,
as is −(x − 5)2 = −12(y − 1). You can see that this is the same equation, but has
been multiplied by −1 on both sides.

A parabola in which one side is positive and one side negative, like

(x+ 1)2 = −8(y − 10)

is a downward facing parabola. This form might also appear as

−(x+ 1)2 = 8(y − 10)
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The picture below illustrates this situation:

Vertex: (h, k)

Focus: (h, k + p)

Directrix: y = k − p

p < 0

Notice that, in this case, the focus is below the vertex and the directrix is above it.
Remember that the focus is always in the interior of the curve, while the directrix
is always outside of the curve.

Parabolas can also open to the right or left. In these cases, it is the y variable that
is squared in the standard equation:

(y − k)2 = 4p(x− h)

In these situations, the focus is to the left or right of the vertex. If both sides of the
equation have the same sign, such as (y−5)2 = 12(x−1) or−(y−5)2 = −12(x−1),
then this would be a parabola opening to the right.

Vertex: (h, k)

Focus: (h+ p, k)

Directrix: x = h− p
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If the two sides have opposite signs, then the parabola will open to the left.

Vertex: (h, k)

Focus: (h+ p, k)

Directrix: x = h− p

p < 0

The orientation of the vertex, focus and directrix allows us to determine the equa-
tion of a parabola if we are given certain pieces of information about the vertex,
focus and directrix. The vertex always falls halfway between the focus and di-
rectrix. The key pieces of information in determining the equation of a parabola
are:

1) the vertex: this gives us the values for h and k for the equation.

2) the orientation: this allows us to determine the appropriate form of the
equation

a) (x− h)2 = 4p(y − k)

b) (x− h)2 = −4p(y − k)

c) (y − k)2 = 4p(x− h)

d) (y − k)2 = −4p(x− h)
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Given the following information determine an equation for the parabola described.

Focus at (3, 2) Vertex at (1, 2)

First draw a little sketch of the problem:

−1 1 2 3 4 5

−1

1

2

3

Vertex (1, 2)

Focus (3, 2)

Since the focus always falls within the interior of the parabola’s curve, this parabola
is facing to the right. Its directrix is the line x = −1.

−1 1 2 3 4 5

1

2

3

4

Vertex (1, 2) Focus (3, 2)

The equation for this parabola would be:

(y − 2)2 = 8(x− 1)
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Exercises 5.2(a)

Determine the equation in standard form for each of the parabolas described be-
low.

1) Focus: (2, 5) 2) Focus: (−4, 3)

Vertex: (2, 6) Vertex: (−3, 3)

3) Focus: (1.5, 0) 4) Focus: (−9, 0)

Vertex: (0, 0) Vertex: (−9,−0.5)

5) Focus: (5, 1) 6) Focus: (0, 3)

Directrix: x = 12 Directrix: y = 1

7) Focus: (1,−3) 8) Focus: (−4, 8)

Directrix: y = 2 Directrix: x = −6

9) Vertex: (1, 3), axis of symmetry parallel to y-axis

contains the point (4, 7.5)

10) Vertex: (4, 2), axis of symmetry parallel to y-axis

contains the point (5, 0)
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11) Focus: (0, 0) 12) Focus: (0, 0)

Vertex: (0,−1.25) Vertex: (0, 2.5)

13) Focus: (2, 7) 14) Focus: (−3, 0)

Directrix: x = 0.5 Directrix: x = −2

15) Vertex: (3,−2), axis of symmetry parallel to x-axis,

contains the point (7, 3)

16) Vertex: (−6,−6), axis of symmetry parallel to y-axis,

contains the point (0, 0)
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If we are given the equation of a parabola and need to find the vertex, focus and
directrix, it is often helpful to put the equation in standard form. This usually
requires completing the square.

If we’re given the equation:

x2 + 6x− 4y + 1 = 0

then we know that this will be either an upward or downward facing parabola.
Let’s move everything away from the x terms but leave a space to complete the
square:

x2 + 6x = 4y − 1

To complete the square on this, we need add 9 to both sides so that we can rewrite
the left side as (x+ 3)2.

x2 + 6x+ 9 = 4y − 1 + 9

(x+ 3)2 = 4y + 8

Then we can factor out the coefficient of the y variable (even if it doesn’t factor
evenly).

(x+ 3)2 = 4(y + 2)

So, this is an upward facing parabola with the vertex at the point (−3,−2). To
find the focus and directrix, we need to know the vlaue of p. Since 4p = 4, then
we know that p = 1. This means that the focus will be 1 unit above the vertex at
the point (−3,−1) and the directrix will be one unit below the vertex at the line
y = −3.

Vertex: (−3,−2)

Focus: (−3,−1)

Directrix: y = −3
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Here’s another example:

Express the equation in standard form and determine the vertex, focus and direc-
trix of the following parabola.

y2 − 2y − 1 + 8x = 0

We know that this parabola will be either right or left facing.

First, let’s move all the terms not containing y to the right-hand side but leave
space to complete the square.

y2 − 2y = −8x+ 1

Add 1 to both sides to complete the square:

y2 − 2y + 1 = −8x+ 1 + 1

(y − 1)2 = −8x+ 2

Factor out the coefficient of the x variable:

(y − 1)2 = −8(x− 0.25)

So, this is a left-facing parabola with a vertex at the point (0.25, 1). To find the
focal distance, we say that 4p = −8, so p = −2.

Since it is left-facing, the focus will be a distance of 2 units to the left of the vertex
at the point (−1.75, 1) and the directrix will be a distance of 2 units to the right of
the vertex at the line x = 2.25.
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Exercises 5.2(b)

Express each equation in standard form and determine the vertex, focus and di-
rectrix of each parabola.

Standard form:

4p(y − k) = (x− h)2

4p(x− h) = (y − k)2

1) (x− 2)2 = 8(y + 1) 2) (x+ 5)2 = 12(y − 3)

3) (y + 1)2 = 6(x− 2) 4) (y + 4)2 = 10(x+ 1)

5) (x+ 3)2 = −5(y + 2) 6) (x− 4)2 = −7(y − 6)

7) (y + 8)2 = −6(x+ 4) 8) (y − 3)2 = −9(x+ 4)

9) x2 + 8x+ y + 6 = 0 10) x2 + 6x+ y − 3 = 0

11) y2 + 6y + 8x+ 1 = 0 12) y2 + 8y − 4x+ 8 = 0

13) x2 + 4x− 3y + 7 = 0 14) x2 + 2x− 6y − 11 = 0

15) y2 + 6y − 4x+ 4 = 0 16) y2 − 4y + 3x+ 9 = 0
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17) x+ y2 − 3y + 1 = 0 18) 10 + x+ y2 + 5y = 0

19) x+ y2 − 3y + 4 = 0 20) 3x+ y2 + 8y + 4 = 0

21) x2 + 3x+ 3y − 1 = 0 22) x2 + 5x− 4y − 1 = 0

23) x2 − 8x− 4y + 3 = 0 24) 6x− y2 − 12y + 4 = 0

25) 2x+ 4y2 + 8y − 5 = 0 26) 4x2 − 12x+ 12y + 7 = 0

27) 3x2 − 6x− 9y + 4 = 0 28) 2x− 3y2 + 9y + 5 = 0

Write an equation in standard form for each parabola pictured below.

29) 30)

2 4 6 8

2

4

6

8

10

(4, 3)

(6, 7)

−10 −8 −6 −4 −2 2 4

−12

−8

−4

4

(−2,−3)

(−8,−9)
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31) 32)

2 4 6 8 10 12

−8

−4

4

(5,−2)

(8, 1)

−12 −10 −8 −6 −4 −2

−6
−4
−2

2
4
6
8

10
12

(−7,−5)

(−10, 4)

33) 34)

−6 −4 −2 2 4
−2

2

4

6

8

10

(3, 6)

(−2, 1)

−4 −2 2 4 6

−16

−14

−12

−10

−8

−6

−4

−2

2

(1,−3)
(−2,−6)
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35) 36)

−12 −8 −4

−12

−8

−4

4
(−7, 6)

(−1,−3)

−4 −2 2 4 6 8
−2

2

4

6

8

(−2, 3)
(0, 1)
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5.3 Applications of the Parabola

A parabola that is rotated around its axis of symmetry to create a three dimen-
sional object is called a paraboloid. One of the special properties of a parabola is
that any light (or other electromagnetic wave) striking the interior of the parabola
is reflected to the focus. The proof of this is somewhat complex, but this property
makes the paraboloid a very useful shape in application.

The paraboloid is used to make satellite dishes so that the signal from the satellite
is reflected to the center of the dish. This strengthens the signal. Parabolic micro-
phones are often used at sporting events so that noises on the field can be heard
more clearly on the sidelines. Flashlights and headlights also use this property
in reverse. With the light at the focus of the paraboloid, all the light is reflected
straight ahead, thus concentrating the beam of light.

One last application which has become used more frequently over the last five or
ten years is the use of the paraboloid in solar power. One use of these properties
sets up a tower at the focus of the paraboloid with mirrors banked around the
tower in the paraboloid shape. This focuses all of the sun’s power on the tower
in the center. Often, salt is used in the tower since it has very high melting point.
The salt is melted by the reflected sunlight and flows into a steam turbine. This
has been found to be more efficient than just using standard solar panels.

Example

If a satellite dish is 8 feet across and 3 ft. deep, how far from the bottom of the
dish should the receiver be placed so that it is at the focus of the paraboloid?

First let’s consider what this looks like in two dimensions. Because we are setting
up the graph of this parabola, we can choose to place the vertex at the origin.
This makes things a little easier.

Since the dish was a total of 8 feet across, we split this between the two sides of
the graph, creating the points (4, 3) and (−4, 3). Since the vertex for this parabola
is at the origin, the standard equation is somewhat simplified.



5.3. APPLICATIONS OF THE PARABOLA 281

Here’s what this cross-section looks like:

−4 −3 −2 −1 1 2 3 4
−1

1

2

3

4
(−4, 3) (4, 3)

Taking the standard equation for an upward facing parabola: 4p(y−k) = (x−h)2

and using the point (0, 0) for the vertex leaves us with 4p(y − 0) = (x − 0)2 or
4py = x2.

The main thing we need to do is find the value of p for this situation. This will
tell us where the receiver should be on the satellite dish. Plugging in the points
on the graph that we know will allow us to solve for p.

4py = x2

4p(3) = (4)2

12p = 16

p =
4

3

Thus the receiver should be 4
3

feet or 1 foot 4 inches from the bottom of the dish.
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−4 −3 −2 −1 1 2 3 4
−1

1

2

3

4
(−4, 3) (4, 3)

(0, 1.33)Focus
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Exercises 5.3

1) A satellite dish in the shape of a paraboloid is 10 ft. across and 3 ft. deep.
How far from the vertex at the bottom of the dish should the receiver be placed?

2) A satellite dish in the shape of a paraboloid is 6 ft. across and 2 ft. deep.
How far from the vertex at the bottom of the dish should the receiver be placed?

3) The reflector in a flashlight in the shape of a paraboloid is 2 inches across
and 1 inch deep. How far from the vertex at the bottom of the reflector should
the light source be placed so that the light is reflected straight ahead?

4) The reflector in a flashlight in the shape of a paraboloid is 5 inches across
and 3 inches deep. How far from the vertex at the bottom of the reflector should
the light source be placed so that the light is reflected straight ahead?

5) A car headlight in the shape of a paraboloid has a bulb that is placed 1.25
inches from the vertex at the bottom of the headlight. If the headlight is 6 inches
in diameter, how deep should the headlight be for the bulb to be at the focus of
the paraboloid?

6) A spotlight in the shape of a paraboloid has a bulb that is placed 3 inches
from the vertex at the bottom of the light housing. If the spotlight is 18 inches
in diameter, how deep should the light be for the bulb to be at the focus of the
paraboloid?
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When a cable, chain or string hangs between two ends, it makes the shape of a
catenary, which is generally described by an equation of the form:

f(x) =
ex + e−x

2

However, when the cables of a suspension bridge support the weight of the
roadbed on the bridge, the cables are pulled into the shape of a parabola.

7) The cables of a suspension bridge are in the shape of a parabola. The towers
of the bridge that support the cable are 400 ft. apart and 600 ft. tall. If the cables
touch the roadway at the center of the bridge mid-way between the towers, how
high is the cable 75 ft. from the center of the bridge?

8) The cables of a suspension bridge are in the shape of a parabola. The towers
of the bridge that support the cable are 800 ft. apart and 160 ft. tall. If the cables
touch the roadway at the center of the bridge mid-way between the towers, how
high is the cable 120 ft. from the center of the bridge?

9) A spotlight in the shape of a paraboloid has the light source 2.5 ft. from the
vertex at the bottom of the light. If the depth of the spotlight housing is 4 ft., how
wide should the face of the spotlight be?

10) A flashlight reflector in the shape of a paraboloid has a light source that is
0.5 inches from the vertex at the bottom of the reflector. How deep should the
reflector be if the face of the flashlight is 3 inches in diameter?
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11) The parabolic mirror for the Mount Palomar observatory telescope is 200
inches in diameter and the mirror is 3.75 inches deep at the center. How far from
the center of the mirror is the focal point where the light is reflected?

12) A reflecting telescope contains a mirror in the shape of a paraboloid. If
the mirror is 5 inches across at the opening and 2 inches deep, how far from the
vertex at the bottom of the mirror is the focal point?

13) The cables of a suspension bridge are in the shape of a parabola. The tow-
ers of the bridge that support the cable are 500 ft. apart and 80 ft. tall. If the
cables are 15 ft. above the roadway at the center of the bridge mid-way between
the towers, how high is the cable 100 ft. from the center of the bridge?

14) The cables of a suspension bridge are in the shape of a parabola. The tow-
ers of the bridge that support the cable are 2000 ft. apart and 400 ft. tall. If the
cables are 25 ft. above the roadway at the center of the bridge mid-way between
the towers, how high is the cable 500 ft. from the center of the bridge?

15) A flashlight reflector housing in the shape of a paraboloid is 4 inches deep
and 4 inches across at its widest point. How far from the vertex at the bottom of
the housing should the light source be placed?

16) A flashlight reflector housing in the shape of a paraboloid is 8 inches in
diameter with the light source placed 1 inch from the vertex at the bottom of the
housing. How deep should the housing be for the light source to be placed at the
focal point?
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17) A bridge is built in the shape of a parabolic arch (see figure below). If the
arch is 50 ft. above the water at the center and 200 ft. wide at the water’s surface,
will a boat that is 35 ft. tall clear the arch 30 ft. from the center? If not, how much
taller than the bridge is the boat? If so, how much clearance will there be?

50 ft.

200 ft.

18) A bridge is built in the shape of a parabolic arch. If the arch is 30 ft. above
the water at the center and 150 ft. wide at the water’s surface, find the height of
the arch above the water at distances of 10, 25, 40, and 50 ft. from the center.



Chapter 6

Sequences and Series

6.1 Sequences

A sequence of numbers in a one-to-one correspondence with the natural num-
bers {1, 2, 3, 4, ...} can be defined in several ways. The terms of the sequence may
simply be listed:

{2, 4, 8, 16, 32, ...}

A general expression for the sequence may be identified:

an = 2n

In this situation, n is generally understood to be drawn from the ordered set of
natural numbers. In addition, a sequence may be defined recursively. That is to
say that each successive term will be defined in relation to the preceding term.

287



288 CHAPTER 6. SEQUENCES AND SERIES

For the example that we’re using above, a recursive definition would be as fol-
lows:

a1 = 2

an = 2 ∗ an−1

or

an+1 = 2 ∗ an

A sequence may be thought of as a function or relation in which the domain is
restricted to positive whole numbers.

Examples

Find the first four terms of the given sequence and the 10th term of the sequence.

1) an = n2 + 3

a1 = 4, a2 = 7, a3 = 12, a4 = 19, a10 = 103

2) a1 = 5

an = an−1 + 6

a1 = 5, a2 = 11, a3 = 17, a4 = 23, a10 = 59
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Finding a general or recursive definition for a sequence can be trickier than just
writing out the terms. Common things to look for -

Is this an alternating sequence? That is, do the terms bounce back and forth
between positive and negative values. If so, then you will need to include (−1)n

or (−1)n+1 in your general term.

Example: {−1, 2,−3, 4, ...}

an = (−1)n(n)

or

a1 = −1

an = (−1)(an−1) + (−1)n

Is there a common difference between the terms? If so, then the sequence behaves
much like a linear function and will have a form similar to y = mx + b, where m
is the common difference.

Example: {5, 8, 11, 14, ...}

an = 3n+ 2

or

a1 = 5

an = an−1 + 3



290 CHAPTER 6. SEQUENCES AND SERIES

Is there a common multiplier? If so, then this should be a power function where
a particular base is being raised to the power of n.

Example: {3, 15, 75, 375, ...}

an = 3 ∗ 5n−1

or

a1 = 3

an = 5 ∗ an−1

Other patterns to look for are perfect squares and perfect cubes.
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Exercises 6.1

Find the first four terms of the given sequence and the 10th term of the sequence.

1) an = 3n+ 1 2) an = 4n− 12 3) an = −5n+ 3

4) an = −2n+ 7 5) an = 2n2 6) an = 5n2 − 1

7) an = (−1)n(4n) 8) an = (−1)n+1

(
1

n

)
9) an =

2n

3n−1

10) an =
5n

2n+1
11) an =

(−1)n−1

2n+ 5
12) an =

(−1)n

3n− 2

13) a1 = −3 14) a1 = 2 15) a1 = 7

an = an−1 + 4 an = an−1 + 12 an = 9− an−1

16) a1 = −5 17) a1 = 1 18) a1 = 4

an = 17− an−1 an = n+ an−1 an = n− an−1

19) a1 = 1
2

20) a1 = 2
5

an =
(−1)n

an−1
an =

(−1)n+1

2an−1
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For each of the given sequences - find a general term an, and also find a recursive
definition for the sequence.

21) {6, 7, 8, 9, 10, ...} 22) {9, 11, 13, 15, 17, ...}

23) {1, 4, 7, 10, 13, ...} 24) {−5, 4, 13, 22, 31, ...}

25) {−2, 6,−18, 54, ...} 26) {5,−10, 20,−40, 80, ...}

27) {1,−1,−3,−5,−7, ...} 28) {−8,−15,−22,−29, ...}

29)
{

5

2
,
5

4
,
5

8
,

5

16
, ...

}
30)

{
1

5
,
1

7
,
1

9
,

1

11
, ...

}

31)
{
− 1

3
,
1

9
,− 1

27
,

1

81
, ...

}
32)

{
1

2
,−2

5
,
3

8
,− 4

11
, ...

}

33) {5,−25, 125,−625, ...} 34)
{

1,−1

4
,
1

9
,− 1

16
,

1

25
, ...

}

35)
{

1,
1

2
, 3,

1

4
, 5,

1

6
, ...

}
36)

{
2

3
,
9

4
,

8

27
,
81

16
,

32

243
...

}
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6.2 Arithmetic and Geometric Sequences

Two common types of mathematical sequences are arithmetic sequences and ge-
ometric sequences. An arithmetic sequence has a constant difference between
each consecutive pair of terms. This is similar to the linear functions that have
the form y = mx + b. A geometric sequence has a constant ratio between each
pair of consecutive terms. This would create the effect of a constant multiplier.

Examples

Arithmetic Sequence:

{5, 11, 17, 23, 29, 35, ...}

Notice here the constant difference is 6. If we wanted to write a general term for
this sequence, there are several approaches. One approach is to take the constant
difference as the coefficient for the n term: an = 6n+? Then we just need to
fill in the question mark with a value that matches the sequence. We could say
for the sequence:

{5, 11, 17, 23, 29, 35, ...}

an = 6n− 1

There is also a formula which you can memorize that says that any arithmetic
sequence with a constant difference d is expressed as:

an = a1 + (n− 1)d

Notice that if we plug in the values from our example, we get the same answer
as before:

an = a1 + (n− 1)d

a1 = 5, d = 6

So, a1 + (n− 1)d = 5 + (n− 1) ∗ 6 = 5 + 6n− 6 = 6n− 1

or an = 6n− 1
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If the terms of an arithmetic sequence are getting smaller, then the constant dif-
ference is a negative number.

{24, 19, 14, 9, 4,−1,−6, ...}

an = −5n+ 29

Geometric Sequence

In a geometric sequence there is always a constant multiplier. If the multiplier is
greater than 1, then the terms will get larger. If the multiplier is less than 1, then
the terms will get smaller.

{2, 6, 18, 54, 162, ...}

Notice in this sequence that there is a constant multiplier of 3. This means that
3 should be raised to the power of n in the general expression for the sequence.
The fact that these are not multiples of 3 means that we must have a coefficient
before the 3n.

{2, 6, 18, 54, 162, ...}

an = 2 ∗ 3n−1

If the terms are getting smaller, then the multiplier would be in the denominator:

{50, 10, 2, 0.4, 0.08, ...}

Notice here that each term is begin divided by 5 (or multiplied by 1
5
).

{50, 10, 2, 0.4, 0.08, ...}

an =
50

5n−1
or an =

250

5n
or an = 50 ∗

(
1

5

)n−1
and so on.
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Exercises 6.2

Determine whether each sequence is arithmetic, geometric or neither.

If it is arithmetic, determine the constant difference.

If it is geometric determine the constant ratio.

1) {18, 22, 26, 30, 34, ...} 2) {9, 19, 199, 1999, ...}

3) {8, 12, 18, 27, ...} 4) {15, 7,−1,−9,−17, ...}

5)
{

1

2
,
2

3
,
3

4
,
4

5
,
5

6
, ...

}
6) {100,−50, 25,−12.5, ...}

7) {−8, 12, 32, 52, ...} 8) {1, 4, 9, 16, 25, ...}

9) {11, 101, 1001, 10001, ...} 10) {12, 15, 18, 21, 24, ...}

11) {80, 20, 5, 1.25, ...} 12) {5, 15, 45, 135, 405, ...}

13) {1, 3, 6, 10, 15, ...} 14) {2, 4, 6, 8, 10, ...}

15) {−1,−2,−4,−8,−16, ...} 16) {1, 1, 2, 3, 5, 8, 13, 21, ...}
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6.3 Series

Learning about mathematical sequences is usually a precursor to learning about
mathematical series. A mathematical series is a sequence of numbers that is being
added together. The importance of mathematical series cannot be understated.
Many equations in the sciences cannot be solved by algebraic methods and must
resort to series solutions. The notation for a mathematical series is typically the
Greek capital letter sigma: Σ. The sigma notation is used as a short-hand method
of representing a mathematical series with a particular form.

For example, if we are given the mathematical series:

1+5+9+13+17+21

This can be represented as follows:

5∑
k=0

4k + 1

We could also express the same series as:

6∑
k=1

4k − 3

Both expressions represent the terms being added together. This first example is
an example of a finite series because it has a last term. Many mathematical series
are infinite series. For example:

∞∑
k=1

1

2k
=

1

2
+

1

4
+

1

8
+

1

16
+

1

32
+ ...

is an example of an infinite series.

Working with infinite series can be quite useful, but also somewhat confusing.
The behavior of an infinite series can be contradictory depending on how you
analyze it.
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Exercises 6.3

Write out each series in expanded notation.

1)
10∑
k=1

2k − 5 2)
7∑

k=3

6k − 3 3)
9∑

k=2

(−1)k
(

1

k

)

4)
10∑
k=0

(−1)k+1(k − 4) 5)
4∑

k=0

k2

2
6)

8∑
k=1

k

3k

Write each series using sigma notation.

7) 8 + 12 + 16 + 20 + 24 + 28 8) 5 + 10 + 15 + 20 + 25 + 30

9) 2 + 9 + 16 + 23 + · · ·+ 65 10) 5 + 8 + 11 + 14 + · · ·+ 95

11) 1 + 4 + 9 + 16 + · · ·+ 256 12) 1 + 8 + 27 + 64 + · · ·+ 1331

13) 1− 1

2
+

1

4
− 1

8
+

1

16
− 1

32
14) 27− 9 + 3− 1 +

1

3
− 1

9
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6.4 Sum of a Series

To find approximate solutions to problems in the sciences, it is often necessary
to calculate the sum of a finite or infinite series. There are a variety of formu-
las that are used to accomplish this. Some of these formulas will be presented
with proofs, but others will not. If you are interested in the proofs that are not
included, please let me know.

General Formulas

Constant Series - notice that there is no k in the summation, the c is a constant
that does not depend on the value of k.

n∑
k=1

c = c+ c+ c+ · · ·+ c = n ∗ c

Sum of the first n integers:

n∑
k=1

k = 1 + 2 + 3 + · · ·+ n =
n(n+ 1)

2

Sum of the first n perfect squares:

n∑
k=1

k2 = 1 + 4 + 9 + · · ·+ n2 =
n(n+ 1)(2n+ 1)

6

Sum of the first n perfect cubes:

n∑
k=1

k3 = 1 + 8 + 27 + · · ·+ n3 =

(
n(n+ 1)

2

)2

The first formula should be obvious. The other three formulas are usually proved
using mathematical induction, which we won’t cover in this course. If you’re
interested in these proofs and how mathematical induction works, please let me
know.
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Formulas for the sum of arithmetic and geometric series:

Arithmetic Series: like an arithmetic sequence, an arithmetic series has a constant
difference d. If we write out the terms of the series:

n∑
k=1

ak = a1 + a2 + a3 + · · ·+ an

we can rewrite this in terms of the first term (a1) and the constant difference d.

n∑
k=1

ak = a1 + (a1 + d) + (a2 + 2d) + · · ·+ (a1 + (n− 1)d)

This expression is equivalent to:

n∑
k=1

ak = (a1 + a1 + a1 + · · ·+ a1) + (d+ 2d+ 3d+ · · · (n− 1)d)

n∑
k=1

ak = na1 + d(1 + 2 + 3 + · · · (n− 1))

Using the previous formula for the sum 1 + 2 + 3 + · · ·+ (n− 1) gives us:

n∑
k=1

ak = na1 + d

(
(n− 1)n

2

)

This formula is often stated in various forms:

n∑
k=1

ak =
n

2
(2a1 + (n− 1)d)

or

n∑
k=1

ak =
n

2
(a1 + an)

since a1 + (n− 1)d = an.
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Geometric Series:

Given a geometric series, whose first term is a and with a constant ratio of r,
n∑
k=1

a ∗ rk−1, we can write out the terms of the series in a similar way that we did

for the arithmetic series.

n∑
k=1

a ∗ rk−1 = a+ ar + ar2 + ar3 + · · ·+ arn−1

The trick to finding a formula for the sum of this type of series is to multiply both
sides of the previous equation by r.

For simplicity’s sake let’s rename the sum of the series
n∑
k=1

a ∗ rk−1 as Sn.

So,

Sn = a+ ar + ar2 + ar3 + · · ·+ arn−1

and

r ∗ Sn = r(a+ ar + ar2 + ar3 + · · ·+ arn−1) = ar + ar2 + ar3 + · · ·+ arn

If we subtract these two equations, we will have:

Sn = a+ ar + ar2 + ar3 + · · ·+ arn−1

−
(
r ∗ Sn = ar + ar2 + ar3 + · · ·+ arn

)
Then we’ll have:

Sn − rSn = a− arn
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Factor out Sn on the left-hand side:

Sn(1− r) = a− arn

and divide on both sides to isolate Sn:

Sn(1− r)
(1− r)

=
a− arn

(1− r)

Sn =
a− arn

1− r

So for a finite geometric series, we can use this formula to find the sum. This
formula can also be used to help find the sum of an infinite geometric series, if
the series converges. Typically this will be when the value of r is between−1 and
1. In other words, |r| < 1 or −1 < r < 1. This is important because it causes
the arn term in the above formula to approach 0 as n becomes infinite. So, if
−1 < r < 1, then the sum of an infinite geometric series wil be:

Sn =
a

1− r
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Exercises 6.4

Find the sum for each of the following finite geometric series.

1)
7∑

k=1

3

(
1

4

)k−1
2)

7∑
k=1

16

(
1

3

)k−1
3)

7∑
k=1

3k

4)
10∑
k=1

2k−1 5)
5∑

k=1

4k−1 6)
4∑

k=1

6k−1

7)
7∑

k=1

2k 8)
8∑

k=1

3k 9)
5∑

k=1

2k+2

10)
6∑
1

3k−4

Determine whether each of the following geometric series has a sum. If it does,
use the formula Sn =

a

1− r
to find the sum.

11)
∞∑
k=1

5 ∗
(

2

3

)k−1
12)

∞∑
k=1

12 ∗
(

1

2

)k−1

13)
∞∑
k=1

(
3

4

)k−1
14)

∞∑
k=1

(
3

5

)k−1

15)
∞∑
k=1

(
1

5

)k+1

16)
∞∑
k=1

(
1

4

)k+1
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17)
∞∑
k=1

(
4

3

)k−1
18)

∞∑
k=1

(
3

2

)k−1

19)
∞∑
k=1

(
− 1

3

)k+2

20)
∞∑
k=1

(
− 1

2

)k+4
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Chapter 7

Combinatorics

7.1 The Fundamental Principle of Counting

Combinatorics is a major area of what is generally known as “Discrete Math-
ematics.” The word discrete refers to quantities that are individual, separate or
distinct. This creates a major division in mathematics between “continuous math-
ematics” and “discrete mathematics.” The difference between these two areas is
that continuous mathematics considers and uses all parts of the number line -
whole numbers, rational numbers (fractions), irrational numbers and so forth.
Discrete mathematics typically uses only the whole numbers.

Rather than limiting the possibilities in mathematics, this restriction actually opens
amazing new areas of consideration. The binary codes that computers use are
generally controlled and kept (mostly) error free through the use of discrete math-
ematics. Computer security for the simplest (checking your on-line bank balance)
and the most complex (high level classified data) digital information is handled
through encryption that relies on the concepts of discrete mathematics.

Any type of application in the sciences that involves choices and possibilities of-
ten uses the concepts of combinatorics. Combinatorial chemistry explores the
results when a series of different chemical groups are added to the same basic
chemical structure to investigate the qualities of the resulting compound. In ad-
dition, combinatorics is very important to the study of probability. In order to
calculate the probability of an event, it is often necessary to calculate how many
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different ways something can happen.

The first major idea of combinatorics is the fundamental principle of counting.
This is the idea that if two events occur in succession and there are m ways to do
the first one and n ways to do the second (after the first has occurred), then there
are m ∗ n ways to complete the two tasks in succession.

For example, in throwing two six-sided dice, there are 36 possibilities - six pos-
sibilities from the first die and six from the second. These possibilities are listed
below:

(1, 1) (1, 2) (1, 3) (1, 4) (1, 5) (1, 6)

(2, 1) (2, 2) (2, 3) (2, 4) (2, 5) (2, 6)

(3, 1) (3, 2) (3, 3) (3, 4) (3, 5) (3, 6)

(4, 1) (4, 2) (4, 3) (4, 4) (4, 5) (4, 6)

(5, 1) (5, 2) (5, 3) (5, 4) (5, 5) (5, 6)

(6, 1) (6, 2) (6, 3) (6, 4) (6, 5) (6, 6)

If we were to throw a six-sided die and an eight sided-sided die, then there would
be 6 ∗ 8 = 48 different possibilities.

Often the creation of a tree diagram can help us to visualize the possibilities.
Suppose that a three-digit code using the numbers 0, 1 and 2 is created so that
repetition of the numbers is allowed. There would 3 possibilities for the first
number, three for the second number and three for the third number meaning
that there would be a total of 3 ∗ 3 ∗ 3 = 27 different possible codes.

The tree diagram to illustrate this is shown on the next page.
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All of the possibilities are listed out and can be constructed from the tree diagram.

Here are some sample problems for using the fundamental principle of counting
(also known as the multiplication principle).

Example:

An ice cream shop offers Vanilla, Chocolate, Strawberry, Boysenberry and Rocky
Road ice cream. The ice cream comes with either a waffle cone, a sugar cone or
a wafer cone and can be plain or with sprinkles. How many different ways are
there to order a single scoop of ice cream?

With 5 different types of ice cream, 3 different cones and 2 choices for sprinkles,
there would be 5 ∗ 3 ∗ 2 = 30 different possibilities.
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Example:

In many states the license plates for automobiles consist of three letters followed
three numbers.

How many different possibilities are there:

if repetition of letters and numbers is allowed?

if repetition of letters and numbers is not allowed?

There are six positions for letters and numbers that make up the license plate.

The first three are to be letters and the second three numbers.

There are 26 choices for the first three and 10 choices for the second three, so there
are 26 ∗ 26 ∗ 26 ∗ 10 ∗ 10 ∗ 10 = 17, 576, 000 possible license plates if repetition is
allowed.

If repetition is not allowed then we have to discount whichever letter or number
is chosen for a particular position. So, for the first letter there are 26 possibilities,
but then only 25 for the second letter and 24 for the third. Likewise, with the
numbers there are 10 choices initially, then 9 choices and then 8.

So, the solution without repetition would be 26 ∗ 25 ∗ 24 ∗ 10 ∗ 9 ∗ 8 = 11, 232, 000
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Exercises 7.1

1) A multiple choice test has 8 questions with four choices (a, b, c, d) for each
question. How many different ways can the test be completed?

2) Local telephone numbers consist of seven digits. Given that the first number
cannot be a 0 or 1, how many different phone numbers are possible?

3) Nationally, phone numbers consist of of 10 digits - 3 for the area code and
7 for the local number. Before the 1990’s the digits used in the area code were
restricted so that the first digit couldn’t be a 0 or a 1 and the second digit had to
be a 0 or a 1. This was changed to allow for more phone numbers. A useful way
to describe the original plan and the new plan is as follows:

Let X represent any number 0 - 9

Let N represent any number 2 - 9

Let Y represent any number 0 - 1

In this set-up, under the old plan all phone numbers had to adhere to a format of:

NYX NNX XXXX

The reasons for these restrictions had to do with the switching apparatus used by
the phone company.

Under the new plan, phone numbers must follow the format:

NXX NXX XXXX

How many phone numbers are possible under the old plan?

How many phone numbers are possible under the new plan?

How many phone numbers are possible under the new plan for a state that has
only one area code?
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4) A coin is flipped five times and the result each time is recorded. How many
different possible outcomes are there?

5) A coin is flipped and a six-sided die is rolled and the results are recorded. If
this is done three times, how many possible outcomes are there?

6) Two cards are chosen from a deck of 52 cards. If the first card is not replaced
before the second card is chosen, how many ways are there to choose:

a) A spade first and a heart second?

b) Two spades?

7) A company has 3000 employees. They plan to implement an employee ID
numbering system that would consist of a letter followed by two digits. Is it
possible to give each employee a different ID code under this plan?

8) A baseball team has 7 pitchers and 3 catchers. How many different batteries
(pitcher - catcher combinations) are possible?

9) A string of five letters is created using the letters A,B,C, D and E. How many
of these letter strings are possible if:

a) No conditions are imposed

b) Repetition of the letter A is not allowed

c) Each letter string must begin with C

d) B must be the middle letter

e) A, B and C must be the middle letters in any order with no repetition

For Part (e) please list all possibilities.
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10) A combination lock is numbered from 0 to 30. Each combination consists
of three numbers in succession. Successive numbers must be different, but the
first and third can be the same. How many different combinations are possible?
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7.2 Factorial Notation and Permutations

In considering the number of possibilities of various events, particular scenarios
typically emerge in different problems. One of these scenarios is the multipli-
cation of consecutive whole numbers. For example, given the question of how
many ways there are to seat a given number of people in a row of chairs, there
will obviously not be repetition of the individuals. So, if we wanted to know how
many different ways there are to seat 5 people in a row of five chairs, there would
be 5 choices for the first seat, 4 choices for the second seat, 3 choices for the third
seat and so on.

5 ∗ 4 ∗ 3 ∗ 2 ∗ 1 = 120 choices

In these situations the 1 is sometimes omitted because it doesn’t change the value
of the answer. This process of multiplying consecutive decreasing whole num-
bers is called a “factorial.” The notation for a factorial is an exclamation point. So
the problem above could be answered: 5! = 120. By definition, 0! = 1. Although
this may not seem logical intuitively, the definition is based on its application in
permutation problems.

A “permutation” uses factorials for solving situations in which not all of the pos-
sibilities will be selected.

So, for example, if we wanted to know how many ways can first, second and third
place finishes occur in a race with 7 contestants, there would be seven possibilities
for first place, then six choices for second place, then five choices for third place.

So, there are 7 ∗ 6 ∗ 5 = 210 possible ways to accomplish this.

The standard notation for this type of permutation is generally nPr or P (n, r).

This notation represents the number of ways of allocating r distinct elements into
separate positions from a group of n possibilities.

In the example above the expression 7 ∗ 6 ∗ 5 would be represented as 7P3 or
P (7, 3).
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The standard definition of this notation is:

nPr =
n!

(n− r)!

You can see that, in the example, we were interested in 7P3, which would be
calculated as:

7P3 =
7!

(7− 3)!
=

7!

4!
=

7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

4 ∗ 3 ∗ 2 ∗ 1

The 4 ∗ 3 ∗ 2 ∗ 1 in the numerator and denominator cancel each other out, so we
are just left with the expression we fouind intuitively:

7P3 = 7 ∗ 6 ∗ 5 = 210

Although the formal notation may seem cumbersome when compared to the in-
tuitive solution, it is handy when working with more complex problems, prob-
lems that involve large numbers, or problems that involve variables.

Note that, in this example, the order of finishing the race is important. That is to
say that the same three contestants might comprise different finish orders.

1st place: Alice 1st place: Bob
2nd place: Bob 2nd place: Charlie
3rd place: Charlie 3rd place: Alice

The two finishes listed above are distinct choices and are counted separately in
the 210 possibilities. If we were only concerned with selecting 3 people from a
group of 7, then the order of the people wouldn’t be important - this is generally
referred to a “combination” rather than a permutation and will be discussed in the
next section.

Returning to the original example in this section - how many different ways are
there to seat 5 people in a row of 5 chairs? If we use the standard definition of
permutations, then this would be 5P5.

5P5 =
5!

(5− 5)!
=

5!

0!
=

120

1
= 120

This is the reason why 0! is defined as 1.
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EXERCISES 7.2

1) 4 ∗ 5! 2) 3! ∗ 4! 3) 5! ∗ 3!

4)
8!

6!
5)

10!

7!
6)

9! ∗ 6!

3! ∗ 7!

7)
12! ∗ 3!

8! ∗ 6!
8) 10P4 9) 4P3

10) 7P5 11) 9P2 12) 8P4

13) 50P3 14) nP4 15) 10Pr

16) List all the permutations of the letters {a, b, c}.

17) List all the permutations of the letters {a, b, c} taken two at a time.

18) How many permutations are there of the group of letters {a, b, c, d, e}?

19) How many permutations are there of the group of letters {a, b, c, d}?

List these permutations.
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20) How many ways can a president, vice president and secretary be chosen
from a group of 20 students?

21) How many ways can a president, vice president, secretary and treasurer
be chosen from a group of 50 students?

22) How many ways can 5 boys and 5 girls be seated in a row containing ten
seats:

a) with no restrictions?

b) if boys and girls must alternate seats?

23) How many ways can 5 boys and 4 girls be seated in a row containing nine
seats:

a) with no restrictions?

b) if boys and girls must alternate seats?

24) How many ways can 6 people be seated if there are 10 chairs to choose
from?

25) How many ways can 4 people be seated if there are 9 chairs to choose from?

26) How many ways can a group of 8 people be seated in a row of 8 seats if
two people insist on sitting together?

27) How many ways can a group of 10 people be seated in a row of 10 seats if
three people insist on sitting together?
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7.3 Permutations and Combinations

We saw in the last section that, when working with permutations, the order is
always important. If we were choosing 3 people from a group of 7 to serve on a
committee with no assigned roles, the nature of the problem would change.

For example, if we were choosing 3 people from a group of 7 to serve on a com-
mittee as president, vice-president and treasurer, the answer would be 7P3 = 210.
But - if we wanted to choose 3 people from a group of 7 with no assigned roles,
then some of the choices in the permutation would be the same.

In a permutation:

1st place: Alice 1st place: Bob
2nd place: Bob 2nd place: Charlie
3rd place: Charlie 3rd place: Alice

the two choices listed above would be considered as being different and would
be counted separately. In a “combination” in which the order of selection is not
important and there are no assigned roles, we must compensate for these extra
choices.

If we are choosing 3 people from a group of 7 to serve on a committee with no
assigned roles then we should consider that any selection from a permutation
that includes the same three people should only be counted once.

So, when we select the three people, we should consider how many different
ways there are to group them and then remove those extra choices. In this ex-
ample, we are choosing three people. Each group of three can be arranged in six
different ways 3! = 3 ∗ 2 = 6, so each distinct group of three is counted six times.

In order to find the actual number of choices we take the number of possible
permutations and divide by 6 to arrive at the actual answer:

7C3 =
7P3

3!
=

7!

4! ∗ 3!
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In a combination in which the order is not important and there are no assigned
roles the number of possibilities is defined as:

nCr =
n!

(n− r)! ∗ r!

One way to remember the difference between a permutation and a combination is
that on a combination pizza it doesn’t make any difference whether the sausage
goes on before the pepperoni or whether the onions are put on first - so in a
combination, order is not important!
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EXERCISES 7.3

Find the value of the following expressions.

1) 10C4 2) 8C3 3) 10C6 4) 8C5

5) 15C12 6) 18C2 7) nC4 8) 9Cr

9) How many three-topping pizzas can be made if there are twelve toppings
to choose from?

10) How many bridge hands of 13 cards are possible from a deck of 52 cards?

11) How many poker hands of 5 cards are possible from a deck of 52 cards?

12) How many different bridge hands of 13 cards are possible if none of the
cards is higher than 10 (i.e. no face cards)?

13) How many different poker hands of 5 cards are possible if none of the cards
is higher than 8?

14) If a person has 10 different t-shirts, how many ways are there to choose 4
to take on a trip?

15) If a band has practiced 15 songs, how many ways are there for them to
select 4 songs to play at a battle of the bands? How many different performances
of four songs are possible?
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16) Fifteen boys and 12 girls are on a camping trip. How many ways can a
group of seven be selected to gather firewood:

a) with no conditions

b) the group contains four girls and three boys

c) the group contains at least four girls

17) A class of 25 students is comprised of 15 girls and 10 boys. In how many
ways can a committee of 8 students be selected if:

a) there are no restrictions

b) no males are included on the committee

c) no females are included on the committee

d) the committee must have 5 boys and 3 girls

18) From a group of 12 male and 12 female tennis players, two men and two
women will be chosen to compete in a men-vs-women doubles match. How
many different matches are possible?

19) In a seventh-grade dance class, there are 20 girls and 17 boys.

a) How many ways can the students be paired off to create dance cou-
ples consisting of one boy and one girl?

b) How many ways are there to create a group of 17 boy/girl couples?

c) How many ways are there to create a group of 18 couples without
restrictions?
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7.4 General Combinatorics Problems

As is often the case, practicing one type of problem at a time is helpful to master
the techniques necessary to solve that type of problem. More difficult is deciding
which type of problem you are working on and choosing which techniques to use
to solve the problem. In this section, the problem types from the previous three
sections are combined.

EXERCISES 4.4

SET I

1) How many strings of six lower case letters from the English alphabet con-
tain:

a) the letter a?

b) the letters a and b in consecutive positions with a preceding b, with all
the letters distinct?

c) the letters a and b, where a is somewhere to the left of b in the string,
with all the letters distinct?

2) Seven women and nine men are on the faculty in the mathematics depart-
ment at a school.

a) How many ways are there to select a committee of five members of
the department if at least one woman must be on the committee?

b) How many ways are there to select a committee of five members of the
department if at least one woman and at least one man must be on the committee?
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3) Suppose that a department contains 10 men and 15 women. How many
ways are there to form a committee with 6 members if it must have the same
number of men and women?

4) The English alphabet contains 21 consonants and 5 vowels. How many
strings of 6 lower case letters of the English alphabet contain:

a) exactly one vowel? b) exactly 2 vowels?

c) at least 1 vowel? d) at least 2 vowels?

5) How many ways are there to select 12 countries in the United Nations to
serve on a council if 3 are selected from a block of 45, 4 are selected from a block
of 57, and the others are selected from the remaining 69 countries?

6) Suppose that a department contains 10 men and 15 women. How many
ways are there to form a committee with 6 members if it must have more women
than men?

7) How many liscence plates consisting of three letters followed by three digits
contain no letter or digit twice?

8) In the women’s tennis tournement at Wimbledon, two finalists, A and B, are
competing for the title, which will be awarded to the first player to win two sets.
In how many different ways can the match be completed?

9) In the men’s tennis tournement at Wimbledon, two finalists, A and B, are
competing for the title, which will be awarded to the first player to win three
sets. In how many different ways can the match be completed?

10) In how many different ways can a panel of 12 jurors and 2 alternate jurors
be chosen from a group of 30 prospective jurors?
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SET II

11) A class has 20 students, of which 12 are female and 8 are male. In how
many ways can a committee of five students be picked from the class if:

a) No restrictions are placed on the choice of students

b) No males are included on the committee

c) The committee must have three female members and 2 male mem-
bers

12) A school dance committee is to be chosen from a group of students con-
sisting of six freshman, eight sophomores, twelve juniors and ten seniors. If the
committee should consist of two freshman, three sophomores, four juniors and
five seniors, how many ways can this be done?

13) A theater company consists of 22 actors - 10 men and 12 women. In the
next play, the director needs to cast a leading man, leading lady, supporting male
role, supporting female role and eight extras (three men and five women). In how
many ways can this play be cast?

14) A hockey coach has 20 players of which twelve play forward, six play de-
fense and two are goalies. In how many ways can the coach pick a lineup con-
sisting of three forwards, two defense players and one goalie?

15) In how many ways can ten students be arranged in a row for a class picture
if John and Jane want to stand next to each other and Ed and Sally also want to
stand next to each other?

16) In how many ways can the students in the previous problem be arranged
if Ed and Sally want to stand next to each other, but John and Jane refuse to stand
next to each other?
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17) In how many ways can four men and four women be seated in a row of
eight seats if:

a) The first seat is occupied by a man

b) The first and last seats are occupied by women

SET III

18) The social security number of a person is a sequence of nine digits that are
not necessarily distinct. How many social security numbers are possible?

19) A variable name in the BASIC programming language is either a letter of
the alphabet or a letter followed by a digit. How many distinct variable names
are there in the BASIC language?

20) a) How many even numbers are there between 0 and 100?

b) How many even numbers with distinct digits are there between 0 and
100?

21) There are six characters - three letters of the English alphabet followed by
three digits - which appear on the back panel of a particular brand of printer as
an identification number. Find the number of possible identification numbers if:

a) characters can be repeated

b) digits cannot repeat

c) letters cannot repeat

d) characters cannot repeat
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22) A sequence of characters is called a palindrome if it reads the same for-
wards and backwards. For example K98EE89K is an eight character palindrome
and K98E89K is a seven character palindrome. A MAN A PLAN A CANAL
PANAMA is also a palindrome as are WAS IT A RAT I SAW, TACO CAT, TANGY
GNAT, and NEVER ODD OR EVEN. Find the number of nine character palin-
dromes that can be formed using the letters of the alphabet such that no letter
appears more than twice in each one.

23) Find the number of ways to form a four-letter sequence using the letters A,
B, C, D and E if:

a) repetitions are permitted

b) repetitions are not permitted

c) the sequence contains the letter A but repetitions are not permitted

d) the sequence contains the letter A and repetitions are permitted

24) There are 10 members A, B, C, D, E, F, G, H, I and J in a fund raising com-
mittee. The first task of the committee is to choose a chairperson, a secretary and
a treasurer from this group. No individual can hold more than one office. How
many ways can these three positions be filled if:

a) no one has any objectiion for holding any of these offices

b) C needs to be the chairperson

c) B does not want to be the chairperson

d) A is not willing to serve as chairperson or secretary

e) either I or J must be the treasurer

f) E or F or G must hold one of the three offices
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25) Find the number of ways of picking each of the following from a standard
deck of cards.

a) a king and a queen

b) a king or a queen

c) a king and a red card

d) a king or a red card

26) There are three bridges connecting two towns A and B. Between towns B
and C there are four bridges. A salesperson needs to travel from A to C via B.
Find:

a) the number of possible choices of bridges from A to C

b) the number of choices for a round trip from A to C and back to A

c) the number of choices for a round trip if no bridge may be crossed
twice

27) A sequence of digits in which each digit is 0 or 1 is called binary number.
Eight digit binary numbers are often referred to as “bytes.”

a) How many bytes are possible?

b) How many bytes begin with 10 and end with 01?

c) How many bytes begin with 10 but do not end with 01?

d) How many bytes begin with 10 or end with 01?
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28) A group of 12 is to be seated in a row of chairs. How many ways can this
be done if:

a) two people, A and B must be seated next to each other?

b) two people A and B must not be seated next to each other?

29) A variable in the FORTRAN language is a sequence that has at most six
characters with the first character being a letter of the alphabet and the remain-
ing characters (if any) being either letters or digits. How many distinct variable
names are possible?

30) Four station wagons, five sedans and six vans are to be parked in a row of
15 spaces. Find the nubmer of ways to park the vehicles if:

a) the station wagons are parked at the beginning, then the sedans, then
the vans

b) vehicles of the same type must be parked together
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7.5 Distinguishable Permutations

If there is a collection of 15 balls of various colors, then the number of permuta-
tions in lining the balls up in a row is 15P15 = 15!. If all of the balls were the same
color there would only be one distinguishable permutation in lining them up in a
row because the balls themselves would look the same no matter how they were
arranged.

If 10 of the balls were yellow and the other 5 balls are all different colors, how
many distinguishable permutations would there be?

No matter how the balls are arranged, because the 10 yellow balls are indistin-
guishable from each other, they could be interchanged without any perceptable
change in the overall arrangement. As a result, the number of distinguishable

permutations in this case would be
15!

10!
, since there are 10! rearrangements of the

yellow balls for each fixed position of the other balls.

The general rule for this type of scenario is that, given n objects in which there are
n1 objects of one kind that are indistinguishable, n2 objects of another kind that
are indistinguishable and so on, then number of distinguishable permutations
will be:

n!

n1! ∗ n2! ∗ n3! ∗ · · · ∗ nk!

with n1 + n2 + n3 + · · ·+ nk = n

Example

Find the number of ways of placing 12 balls in a row given that 5 are red, 3 are
green and 4 are yellow.

This would be
12!

5!3!4!
=

12 ∗ 11 ∗ 10 ∗ 9 ∗ 8 ∗ 7 ∗ 6 ∗ 5 ∗ 4 ∗ 3 ∗ 2 ∗ 1

5 ∗ 4 ∗ 3 ∗ 2 ∗ 3 ∗ 2 ∗ 4 ∗ 3 ∗ 2

=
12 ∗ 11 ∗ 10 ∗ 9 ∗ 8 ∗ 7 ∗ 6

3 ∗ 2 ∗ 4 ∗ 3 ∗ 2

= 27, 720



328 CHAPTER 7. COMBINATORICS

Another way to think about this problem is to choose five of the twelve spaces in
which to place the red balls - since the order of selection is not important, there
are 12C5 ways to do this. Then, from the remaining 7 spaces available, we need to
choose three of them in which to place the green balls. There are 7C3 ways to do
that. The four yellow balls are then placed in the remaining four spaces.

The result of this process is that there are 12C5 ways to choose the places for the
red balls and 7C3 ways to choose the places for the green balls, which results in:

12C5 ∗7 C3 =
12!

5!7!
∗ 7!

3!4!
=

12!

5!3!4!

This results in the same answer as when we approached the problem as a per-
mutation. Considering the problem in this way helps us to solve problems which
involve the assigning of tasks to groups of individuals.

Example

Fourteen construction workers are to be assigned to three different tasks. Six
workers are needed for mixing cement, five for laying bricks and three for carry-
ing the bricks to the brick layers. In how many different ways can the workers be
assigned to these tasks?

This is also a problem of distinguishable permutation. Although the order of the
workers is not important here, the result is the same:

14!

6!5!3!

Another way to think about problems of this type is that they are combination
problems, since the order in which the workers are assigned is not important. In
that case, we need to select six of the fourteen workers to mix cement, five to lay
bricks and three to carry bricks.

To select six workers to mix cement: 14C6 =
14!

6!8!

To select five workers (from the remaining 8) to lay bricks: 8C5 =
8!

5!3!

To select three workers (from the reamining three) to carry bricks: 1
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If there are
14!

6!8!
ways to choose the cement crew and

8!

5!3!
ways to choose the

bricklayers from the remaining eight workers, then there will be:

14!

6!8!
∗ 8!

5!3!
=

14!

6!5!3!

ways to assign the workers to these tasks.



330 CHAPTER 7. COMBINATORICS

Exercises 7.5

Find the number of distinguishable permutations of the given letters.

1) AAABBC 2) AAABBBCCC

3) AABCD 4) ABCDDDEE

5) In how many ways can two blue marbles and four red marbles be arranged
in a row?

6) In how many ways can five red balls, two white balls, and seven yellow
balls be arranged in a row?

7) In how many different ways can four pennies, three nickels, two dimes and
three quarters be arranged in a row?

8) In how many ways can the letters of the word ELEEMOSYNARY be ar-
ranged?

9) A man bought three vanilla ice-cream cones, two chocolate cones, four straw-
berry cones and five butterscotch cones for 14 children. In how many ways can
he distribute the cones among the children.

10) When seven students take a trip, they find a hotel with three rooms avail-
able - a room for one person, a room for two poeple and a room for three people.
In how many different ways can the students be assigned to these rooms? (one
student will sleep in the car)

11) Eight workers are cleaning a large house. Five are needed to clean win-
dows, two to clean carpets and one to clean the rest of the house. In how many
different ways can these tasks be assigned to the eight workers?
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7.6 Probability

If a coin is tossed three times, what is the probability of getting exactly two heads?
at least two heads? no heads?

Probability is defined as the number of ways the event in question can happen
divided by the number of total possibilities. We can define the collection of all
possible outcomes in an experiement with all outcomes equally likely as the sam-
ple space of the experiment. Then the number of ways the event in question can
happen can be defined as n(E) and size of the sample space can be defined as
n(S). In this notation, the probability of an event P (E) is defined below:

P (E) =
n(E)

n(S)
=

number of elements in E
number of elements in S

The question at the opening of this section addresses a situation in which a coin
is tossed three times. We can use a tree diagram to examine the sample space of
this situation.

H

H

T

H

T

H

T

T

H

T

H

T

H

T

The possibilities in this experiment are:

{HHH, HHT, HTH, HTT, THH, THT, TTH, TTT }

Since there are eight possibilities, with 3 of them having exactly two heads, the

probability is
3

8
= 0.375.
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The probability of getting at least two heads is
4

8
=

1

2
or 0.5

The probability of getting no heads is
1

8
= 0.125

Example

A five-card poker hand is drawn from a standard deck of 52 cards. What is the
probability that all five cards are hearts?

The number of ways to draw five cards from a deck of 52 is 52C5. This is a combi-
nation since the order that the cards are drawn does not affect the outcome.

The number of ways of choosing 5 hearts from the 13 in the deck is 13C5.

So the probability of drawing five hearts from a deck of 52 cards is 13C5

52C5

=

1287

2598960
≈ 0.000495

Example

A bag contains 20 tennis balls, of which four are defective. If two balls are drawn
at random from the bag, what is the probability that both are defective?

The sample space is the number of ways to choose two balls from the bag: 20C2.

Since there are 4 defective balls, the number of ways to draw two of them is 4C2.

So, the probability that both balls will be defective is 4C2

20C2

=
6

190
≈ 0.0316.

We can also calculate the probability of drawing one defective ball:

4C1 ∗16 C1

20C2

=
64

190
≈ 0.3368.
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And the probability of drawing no defective balls:

16C2

20C2

=
120

190
≈ 0.6316.

Notice that 6 + 64 + 120 = 190 and that 0.0316 + 0.3368 + 0.6316 = 1 That is to say
that the probabilities for all the possible events should add up to 1.

This allows us to compute probabilities based on the probability that an event
won’t happen.

If the probability of an event is P (E), then the probability that the event will not
happen is 1− P (E).

Example

An urn contains 10 red balls and 15 green balls. If six of the balls are drawn at
random, what is the probability that at least one of them is red?

We can calculate this probability by finding the probability that no red balls are
drawn. The number of ways to draw six green balls is 15C6. The number of ways
to draw six balls from the urn is 25C6. So the probability of drawing six green
balls is:

15C6

25C6

=
5005

177, 100
≈ 0.02826

This means that the probability of drawing at least one red ball is 1 − 0.02826 =
0.97174

We could also find this answer by adding up the possibilities of drawing one red
ball, two red balls and so on, up to six red balls:

10C1 ∗15 C5

25C6

+
10C2 ∗15 C4

25C6

+
10C3 ∗15 C3

25C6

+
10C4 ∗15 C2

25C6

+
10C5 ∗15 C1

25C6

+
10C6

25C6

= 0.1696 + 0.3468 + 0.3083 + 0.1245 + 0.0213 + 0.0012 =

0.9717
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Example

Given 100 computer components, it is known that 10 of the 100 are defective. If
someone were to choose 6 of these components at random, what is the probability
that:

a) two of them are defective?

b) at least 1 of them is defective?

There are 10C2 ways to choose 2 out of the 10 defective components and 90C4 ways
to choose 4 non-defective components. The size of the sample space (the number
of ways to choose 6 components from the 100) is 100C6.

So, the probability for part (a) would be:

10C2 ∗90 C4

100C6

≈ 0.096

The probability in part (b) is most easily computed by finding the probability that
no defective components are selected and then subtracting that value from 1.

1− 90C6

100C6

≈ 1− 0.5223 ≈ 0.4777
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Exercises 7.6

SET I

1) a) If a coin is tossed two times, describe the sample space.

b) Find the probability of getting exactly two heads.

c) Find the probability of getting at least one head.

d) Find the probability of getting exactly one head.

2) a) If a coin is tossed and a single six-sided die is rolled, describe the sam-
ple space.

b) Find the probability of getting heads and an even number.

c) Find the probability of getting heads and a number greater than 4.

d) Find the probability of getting tails and an odd number.

3) When rolling a single, six-sided die, find the probability of:

a) rolling a six

b) rolling an even number

c) rolling a number greater than 5
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4) When rolling a single, six-sided die, find the probability of:

a) rolling a two or a three

b) rolling an odd number

c) rolling a number divisible by three

5) If a card is drawn randomly from a standard 52 card deck, find the proba-
bility of:

a) drawing a king

b) drawing a face card

c) drawing a card that is not a face card

6) If a card is drawn randomly from a standard 52 card deck, find the proba-
bility of:

a) drawing a heart

b) drawing a heart or a spade

c) drawing a card that is a heart, a diamond or a spade

7) A ball is drawn randomly from an urn that contains 8 balls - five red, two
white and one yellow. Find the probability that:

a) a red ball is chosen

b) a yellow ball is not chosen

c) a green ball is chosen



7.6. PROBABILITY 337

8) A ball is drawn randomly from an urn that contains 8 balls - five red, two
white and one yellow. Find the probability that:

a) the ball drawn is neither yellow nor white

b) the ball drawn is either white, yellow, or red

c) the ball chosen is not white

9) A drawer contains 18 socks of which 6 are red, 4 are white and 8 are black.

a) If one sock is drawn at random from the drawer, what is the probability that
it is red?

b) If one red sock is drawn with the first choice, what is the probability that
the next sock drawn is also red?

A poker hand is drawn at random from a standard deck of 52 cards.

10) Find the probability of getting five hearts.

11) Find the probability of getting five cards of the same suit.

12) Find the probability of getting five face cards.

13) Find the probability of getting ace, king, queen, jack and ten of the same
suit.
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14) For problem #14 refer to the sample space in Section 4.1 (or create your
own).

If a pair of standard six-sided dice are rolled, what is the probability of:

a) rolling a 7

b) rolling a 9

c) rolling doubles (the same number on each die)

d) not rolling doubles

e) rolling 9 or higher

SET II

An unbiased coin is tossed 5 times. Find the probability that:

15) the coin lands heads five times

16) the coin lands heads exactly once

17) the coin lands heads at least once

18) the coin lands heads more than once

Two cards are drawn without replacement from a standard deck of 52 cards. Find
the probability that:

19) a pair is drawn

20) a pair is not drawn

21) two black cards are drawn

22) two cards of the same suit are drawn
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A jar contains three yellow balls and five red balls. If four balls are drawn at
random (without replacement), find the probability that:

23) two of the balls are yellow and two are red

24) all of the balls are red

25) exactly three of the balls are red

26) two or three of the balls are yellow

Assume that the probability of a boy being born is the same as the probability of
a girl being born. Find the probability that a family with three children will have:

27) two boys and one girl

28) at least one girl

29) no boys

30) the two oldest children are girls

31) An exam consists of ten True-or-False questions. If a student guesses at
every answer, what is the probability that he or she will answer exactly six ques-
tions correctly?

32) A law firm employs 14 lawyers, 8 of whom are partners in the firm. If
a group of 3 lawyers is chosen at random to attend a conference, what is the
probability that 3 partners will be selected?

33) In a lot of 24 computer components, there are four defective components.
If two of the components are chosen at random, what is the probability that:

a) both of the components are defective?

b) at least one of the components is defective?
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34) A barrel of 60 apples contains 4 rotten apples. If 3 apples are selected at
random, what is the probability that 1 or more of the apples is rotten?

35) A shelf at the home improvement store contains 80 light bulbs of which 6
are defective. If a customer chooses 2 light bulbs at random, what is the proba-
bility that:

a) both are defective?

b) at least one is defective?

36) Some computer components are shipped in boxes of 24. Before they are
shipped, the quality control inspector randomly chooses 8 components from each
box. If any of the 8 components selected are defective, the box is not shipped.
What is the probability that a lot containing exactly 2 defective components would
be shipped anyway?

37) A business is preparing to choose 12 people to go on a business trip from
a group of 100 employees, 60 of whom are women and 40 of whom are men.
Suppose that Ed and Mary are both employees and that the 12 people for the trip
will be chosen randomly.

a) What is the probability that Ed will be chosen?

b) What is the probability that Ed and Mary will both be chosen?

c) If an equal number of men and women are to go on the trip, what is
the probability that Ed will be chosen?

d) If an equal number of men and women are to go on the trip, what is
the probability that Ed and Mary will both be chosen?
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38) A company has has 50 sales representatives on staff. There are three sales
calls that must be made on the east side of town and five sales calls on the west
side. If the sales reps are chosen at random for these eight sales calls:

a) What is the probability that an individual sales rep will be chosen for
any of the eight sales calls?

b) What is the probability that two sales reps will be selected to make
their sales calls on the same side of town.

39) A student studying for a test knows how to do 12 of the 20 problems from
the study guide. If the test contains 10 problems chosen at random from the
study guide, what is the probability that at least 8 of the problems on the test are
problems the student knows how to do?
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Chapter 8

Right Triangle Trigonometry

The Origins of Trigonometry

The precursors to what we study today as Trigonometry had their origin in an-
cient Mesopotamia, Greece and India. These cultures used the concepts of angles
and lengths as an aid to understanding the movements of the heavenly bodies
in the night sky. Ancient trigonometry typically used angles and triangles that
were embedded in circles so that many of the calculations used were based on
the lengths of chords within a circle. The relationships between the lengths of the
chords and other lines drawn within a circle and the measure of the correspond-
ing central angle represent the foundation of trigonometry - the relationship be-
tween angles and distances.

The earliest values for the sine function were calculated by Indian mathemati-
cians in the 5th century. The cosine and tangent, as well as the cotangent, secant
and cosecant were developed by Islamic mathematicians by the 11th century. Eu-
ropean navigators used these ideas extensively to help calculate distances and
direction during the Middle Ages. Modern European trigonometry as we un-
derstand it was then developed throughout the Renaissance (1450-1650) and En-
lightenment (1650-1800).

343
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8.1 Measuring Angles

Measuring Angles in Degrees

The two most common units for measuring angles are degrees and radians. De-
grees are based on the ancient Mesopotamian assignment of 360◦ to a complete
circle. This has its origin in the division of the horizon of the nighttime sky as
the earth takes 365 days to travel around the sun. Because degrees were origi-
nally developed by the Mesopotamians, they are often also broken out into 60
unit measures of minutes and seconds. Sixty seconds make one minute and sixty
minutes makes one degree.

60 seconds=1 minute
or

60′′=1′

60 minutes=1 degree
or

60′=1◦

Angles measured in degrees may also be expressed using decimal portions of a
degree, for example:

72.5◦=72◦ 30′

Converting from decimal to DMS

Converting between degrees expressed with decimals and the degrees, minutes,
seconds format (DMS) is relatively simple. If you’re converting from degrees
expressed with decimals to DMS, simply take the portion of the angle behind the
decimal point and multiply by 60. In our previous example, we would take the .5
from 72.5◦and multiply this by 60: 0.5*60=30. So, the angle in DMS units would
be 72◦ 30′.
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Examples

Convert 21.85◦to DMS units

0.85 ∗ 60 = 51

So, 21.85◦=21◦ 51′

Convert 143.27◦to DMS units

0.27 ∗ 60 = 16.2

So, 143.27◦ = 143◦ 16.2′

In order to compute the number of seconds needed to express this angle in DMS
units, we take the decimal portion of the minutes and multiply by 60:

0.2 ∗ 60 = 12

So, 143.27◦ = 143◦ 16.2′ = 143◦ 16′ 12′′

In the example above we ended with a whole number of seconds. If you don’t get
a whole number for the seconds then you can leave the seconds with a decimal
portion. For example, if you wanted to convert 22.847◦to DMS units:

22.847◦ = 22◦ 50.82′ = 22◦ 50′ 49.2′′

Converting from DMS to decimal

To convert from DMS units to decimals, simply take the seconds portion and
divide by 60 to make it a decimal:

129◦ 19′ 30′′ = 129◦ 19.5′

Then take the new minutes portion and divide it by 60

19.5
60 = 0.325
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This is the decimal portion of the angle

129◦ 19′ 30′′ =129◦ 19.5′ = 129.325◦

If you end up with repeating decimals in this process that’s fine - just indicate the
repeating portion with a bar.

Examples

Convert 42◦ 27′ 36′′ to decimal degrees

36
60= 0.6

42◦ 27′ 36′′ = 42◦ 27.6′

27.6
60 = 0.46

42◦ 27.6′ = 42.46◦

Convert 17◦ 40′ 18′′ to decimal degrees

18
60= 0.3

17◦ 40′ 18′′ = 17◦ 40.3′

40.3
60 = 0.6716

17◦ 40′ 18′′ = 17◦ 40.3′ = 17.6716◦
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Measuring Angles in Radians

The other most commonly used method for measuring angles is radian measure.
Radian measure is based on the central angle of a circle. A given central angle
will trace out an arc of a particular length on the circle. The ratio of the arc length
to the radius of the circle is the angle measure in radians. The benefit of radian
measure is that it is based on a ratio of distances whereas degree measure is not.
This allows radians to be used in calculus in situations in which degree measure
would be inappropriate.

θ

r

The length of the arc intersected by the central angle is the portion of the circum-
ference swept out by the angle along the edge of the circle. The circumference of
the circle would be 2πr, so the length of the arc would be θ

360◦∗2πr. The ratio of

this arclength to the radius is
θ

360◦ ∗2πr
r or

2π
360◦ ∗ θ

or in reduced form

π
180◦ ∗ θ

This assumes that the angle has been expressed in degrees to begin with. If an
angle is expressed in radian measure, then to convert it into degrees, simply mul-
tiply by 180◦

π .
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Examples - Degrees to Radians

Convert 60◦ to radians

π
180◦∗60◦ =π

3

Convert 142◦ to radians

π
180◦∗142◦ =71π

90 or 0.78π.

Examples - Radians to Degrees

Convert π
10 to degrees

180◦

π ∗
π
10= 18◦

Convert π
2 to degrees

180◦

π ∗
π
2= 90◦

Another way to convert radians to degrees is to simply replace the π with 180◦:

π
10=180◦

10 = 18◦

π
2=180◦

2 = 90◦
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Exercises 8.1

Convert each angle measure to decimal degrees.

1. 27◦ 40′ 2. 38◦ 20′ 3. 91◦ 50′

4. 34◦ 10′ 5. 274◦ 18′ 6. 165◦ 48′

7. 17◦ 25′ 8. 63◦ 35′ 9. 183◦ 33′ 36′′

10. 141◦ 6′ 9′′ 11. 211◦ 46′ 48′′ 12. 19◦ 12′ 18′′

Convert each angle measure to DMS notation.

13. 31.425◦ 14. 159.84◦ 15. 6.78◦

16. 24.56◦ 17. 110.25◦ 18. 64.16◦

19. 18.9◦ 20. 85.14◦ 21. 220.43◦

22. 55.17◦ 23. 70.214◦ 24. 116.32◦

Convert each angle measure from degrees to radians.

25. 30◦ 26. 120◦ 27. 45◦

28. 225◦ 29. 60◦ 30. 150◦

31. 90◦ 32. 270◦ 33. 15◦

34. 36◦ 35. 12◦ 36. 104◦
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Convert each angle measure from radians to degrees.

37. π
4 38. π

5 39. π
3

40. π
6 41. 3π

4 42. 7π
3

43. 5π
2 44. 7π

4 45. 5π
6

46. 2π
3 47. π 48. 7π

2
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8.2 The Trigonometric Ratios

There are six common trigonometric ratios that relate the sides of a right triangle
to the angles within the triangle. The three standard ratios are the sine, cosine and
tangent. These are often abbreviated sin, cos and tan. The other three (cosecant,
secant and cotangent) are the reciprocals of the sine, cosine and tangent and are
often abbreviated csc, sec, and cot.

θ

opposite

adjacenthypotenuse

Given an angle situated in a right triangle, the sine function is defined as the ratio
of the side opposite the angle to the hypotenuse, the cosine is defined as the ratio
of the side adjacent to the angle to the hypotenuse and the tangent is defined as
the ratio of the side opposite the angle to the side adjacent to the angle.

sin θ = opp
hyp

cos θ = adj
hyp

tan θ = opp
adj

A common mneumonic device to help remember these relationships is
–SOHCAHTOA– which identifies the Sin as Opp over Hyp Cos as Adj over Hyp
and the Tan as Opp over Adj.
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An acute angle placed in the other position of a right triangle would have dif-
ferent oppposite and adjacent sides although the hypotenuse would remain the
same.

α

adjacent

opposite

hypotenuse

Examples: Trigonometric Ratios

Find sin θ, cos θ and tan θ for the given angle θ

θ

3

5

In order to find the sin and cos of the angle θ, we must first find the hypotenuse
by using the Pythagorean Theorem (a2 + b2 = c2).
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Since we know the legs of the triangle, we can substitute these values for a and b
in the Pythagorean Theorem:

32 + 52 = c2

9 + 25 = c2

34 = c2

√
34 = c

Now that we know the hypotenuse (
√

34), we can determine the sin, cos and tan
for the angle θ.

sin θ = 3√
34

cos θ = 5√
34

tan θ = 3
5

Find sin θ, cos θ and tan θ for the given angle θ

θ

49

Again, in order to find the sin, cos and tan of the angle θ, we must find the missing
side of the triangle by using the Pythagorean Theorem. Since, in this case, we
know the hypotenuse and one of the legs, the value of the hypotenuse must be
substituted for c and the length of the leg we’re given can be substituted for either
a or b.
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42 + b2 = 92

16 + b2 = 81

b2 = 65

b =
√

65

Now that we know the length of the other leg of the triangle (
√

65), we can deter-
mine the sin, cos and tan for the angle θ.

sin θ =
√
65
9

cos θ = 4
9

tan θ =
√
65
4

In addition to the examples above, if we are given the value of one of the trigono-
metric ratios, we can find the value of the other two.

Example

Given that cos θ =1
3 , find sin θ and tan θ.

Given the information about the cosine of the angle θ, we can create a triangle
that will allow us to find sin θ and tan θ.

θ

1

3
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Using the Pythagorean Theorem, we can find the missing side of the triangle:

a2 + 12 = 32

a2 + 1 = 9

a2 = 8

a =
√

8 = 2
√

2

Then sin θ =
√
8
3 and tan θ =

√
8
1 =
√

8.

You might say to yourself, “Wait a minute, just because the cosine of the angle θ
is 1

3 , that doesn’t necessarily mean that the sides of the triangle are 1 and 3, they
could be 2 and 6, or 3 and 9 or any values n and 3n.”

This is true, and if the sides are expressed as n and 3n, then the missing side
would be n

√
8, so that whenever we find a trigonometric ratio, the n’s will cancel

out, so we just leave them out to begin with and call the sides 1 and 3.

Example

Given that tan θ =
√
5
7 , find sin θ and cos θ.

First we’ll take the infomation about the tangent and use this to draw a triangle.

θ

√
5

7
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Then use the Pythagorean Theorem to find the missing side of the triangle:

√
5
2

+ 72 = c2

5 + 49 = c2

54 = c2

√
54 = 3

√
6 = c

So then:

sin θ =
√
5√
54

=

√
5
54

cos θ = 7√
54

= 7
3
√
6
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Exercises 8.2

Find sin θ, cos θ and tan θ for the given triangles.

1. 12

13
θ

2.

√
25 θ

3.

8

15
θ

4.

3

7
θ

5.

6

4
θ

6.

27

36

θ

7.

√
15

2

θ

8.

8

4
√

2

θ
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9.

√
3

2
θ

10.

√
7

1
θ

Use the information given to find the other two trigonometric ratios.

11. tan θ =1
2 12. sin θ =3

4 13. cos θ = 3√
20

14. tan θ = 2 15. sin θ = 5√
40

16. sin θ = 7
10

17. cos θ = 9
40 18. tan θ =

√
3 19. cos θ =1

2

20. cos θ =3
7 21. sin θ =

√
5
7 22. tan θ = 1.5
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8.3 Solving Triangles

Using information about some of the sides and angles of a triangle in order to
find the unknown sides and angles is called “solving the triangle.” If two sides
of a triangle are known, the Pythagorean Theorem can be used to find the third
side. If one of the acute angles in a right triangle is known, the other angle will
be its complement with their sum being 90◦.

Suppose that we have a right triangle in which we know the sides, but no angles.
Another situation could involve knowing the angles but just one side. How could
we solve for the missing measurements in these situations?

Solving problems like these uses precalculated values of the trigonometric ratios
to match the lengths with the appropriate angles and vice versa. Up until the
1980’s, these values were printed in tables that were included in the back of every
textbook (along with tables of logarithms), but have recently been programmed
into calculators using methods that are studied in Calculus.

Most calculators have a button or function designed to find the inverse sine, in-
verse cosine and inverse tangent (sin−1, cos−1, and tan−1), these are the functions
that tell you the measure of the angle that has a sine, cosine or tangent equal to a
particular value.

For example, if we are given an angle θ and know that the sin θ =1
2 :

1
2

θ

Then we can find sin−1(1
2
) on a calculator, which should return a value of 30◦. If

the calculator is in radian mode, it will return a value of ≈ 0.523598776. If you
divided this number by π, you would get 0.16, which means that 0.523598776 ≈ π

6
.

In this chapter we will work mainly in degrees. In Chapter 2, when we graph the
trigonometric functions we will typically use radian measure.
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Example 1

Solve the triangle. Round side lengths to the nearest 100th and angles to the near-
est 10th of a degree.

8

5
θ

α

We can find the third side of the triangle by using the Pythagorean Theorem.

a2 + 52 = 82

a2 + 25 = 64

a2 = 39

a =
√

39 ≈ 6.24

When solving problems of this type, I encourage people to use the most accu-
rate values that are available in the problem. This way, there is less chance for
rounding error to occur.

If we take the values for the sides that were given in the problem (5 and 8), then
we can say that

cos θ =5
8

θ = cos−1(58)

θ ≈ 51.3◦

Then α would be 90◦ − 51.3◦ = 38.7◦ ≈ α.
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Example 2

Solve the triangle. Round side lengths to the nearest 100th and angles to the near-
est 10th of a degree.

68◦

5

First, we can find the other angle in the right triangle: 90◦ − 68◦ = 22◦.

Next, to find the sides, we choose a trigonometric ratio for which we know one
of the sides. In this problem, we can use either the sine or the cosine.

sin 68◦ =a
5

Approximating sin 68◦ on a calculator:

0.9272 ≈a5
5 ∗ 0.9272 ≈ a

4.6 ≈ a

When approximating a trigonometric value from the calculator, it is important to
use at least 4 decimal places of accuracy. Again, this is to avoid rounding errors.

To solve for the remaining side we can either use the Pythagorean Theorem or
use the method demonstrated above, but with the cos 68◦.
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cos 68◦ = b
5

Approximating cos 68◦ on a calculator:

0.3746 ≈ b5
5 ∗ 0.3746 ≈ b

1.9 ≈ b

If we use the Pythagorean Theorem with two sides of the triangle to find the
third, then we would say that:

b2 + 4.62 = 52

b2 + 21.16 = 25

b2 = 3.84

b =
√

3.84 ≈ 1.959 ≈ 2.0

The rounding error in this example comes from the fact that the first side we
found was not exactly 4.6. If we wanted a more accurate answer that matches the
answer we found using the cosine ratio, we just need more accuracy in the leg of
the triangle we found.

Calculating 5 ∗ sin 68◦ ≈ 4.636 should provide enough accuracy.

b2 + 4.6362 = 52

b2 + 21.492496 = 25

b2 = 3.507504

b =
√

3.507504 ≈ 1.8728 ≈ 1.9
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Example 3

Solve the triangle. Round side lengths to the nearest 100th and angles to the near-
est 10th of a degree.

40

22◦10′

If we convert the angle 22◦10′ to 22.16
◦, then the other acute angle in the right

triangle is 90◦ − 22.16
◦

= 67.83
◦ or 67◦50′.

Finding the remaining sides requires the use of either the cosine or tangent func-
tion.

cos 22.16
◦

=40
c

Approximating cos 22.16
◦ on a calculator:

0.9261 ≈40
c

Next we need to multiply on both sides by c:

c ∗ 0.9261 ≈40
c ∗c

0.9261c ≈ 40

Then divide on both sides by 0.9261:
0.9261c
0.9261 ≈

40
0.9261

c ≈ 43.2
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To find the other leg of the triangle, we can use the tangent ratio.

tan 22.16
◦

= a
40

Approximating tan 22.16
◦ on a calculator:

0.4074 ≈ a
40

Then, multiply on both sides by 40:

40 ∗ 0.4074 ≈ a

16.3 ≈ a

We can check this answer by the Pythagorean Theorem:

16.32 + 402 = 1865.69
√

1865.69 ≈ 43.2
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Exercises 8.3

In each problem below, solve the triangle. Round side lengths to the nearest 100th

and angle measures to the nearest 10th of a degree.

1.

8

6 2.

10

12

3. 32.4◦

7

4.

20

16.7◦

5.

10
47◦

6.

15

62◦
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7.

30

16 8.

12

6

9.

35

14◦ 10.
3

37◦

11.

√
11

65◦

12.

√
7 58◦
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8.4 Applications

Trigonometry is often used for what is called “indirect measurement.” This is a
method of measuring inaccessible distances by using the relationships between
lengths and angles within a triangle. Two simple examples of this process are
measuring the height of a tall tree and measuring the distance across a body of
water. In both cases, while it might be possible to measure the distance directly,
it is often much easier to use indirect measurement.

In one example of indirect measurement, the angle of elevation of an object can
be used to create a right triangle in which one angle and one side are known.
The other sides of the triangle may then be solved for. In the problems in this
text, the angle of elevation will typically be given in the problem. In order to
actually measure the angle of elevation of an object, it is possible to use a simple
protractor.

If you wanted to measure the height of a tall tree that sits on flat ground, you
could use a specially modified protractor to do this. Modifying the protractor
by tying a weight to the end of a string and tying the other end of the string
through the hole in the protractor will help to measure the angle of elevation.
Once the protractor is ready, hold it upside down and sight the top of the tree
along the straight edge of the protractor. The weight hanging down will show
the complement to the angle of elevation. In other words, if the angle of elevation
is 20◦, the string will mark out a measurement of 70◦on the protractor.

70◦

20◦
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Closely related to the concept of the angle of elevation is the angle of depression.
This is the angle that is formed by looking down on something from above.

θ

The angle of elevation is θ.

α

The angle of depression is α.

In a situation in which the angle of depression is measured, the angle of eleva-
tion and the angle of depression are alternate interior angles, which makes them
equal.

α

α

The angle of elevation equals the corrresponding angle of depression.
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Example 1

Pacing off 100 ft. on flat ground from the base of a tree, a forester measures the
angle of elevation to the top of the tree as 65◦. What is the height of the tree?

The situation described in the problem creates a diagram like the one below:

h

65◦

100 ft.

Since this is a right triangle, we can use an appropriate trigonometric ratio to find
the height of the tree. In this case,

tan 65◦ = h
100 .

100 ∗ tan 65◦ = h

214.45 ≈ h

So, the tree is about 214.45 feet tall.

Example 2

From the top of a building 125 feet tall, the angle of depression of an intersection
is 34◦. How far from the base of the building is the intersection?

As in the previous example, it is often helpful to draw a diagram.

125 ft.
34◦

d
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Again, the angle of elevation will be equal to the corresponding angle of depres-
sion, so we can use the triangle as seen below to solve the problem:

125 ft.
34◦

34◦

d

In this problem

tan 34◦ =125
d

Multiply on both sides by d

d ∗ tan 34◦ = 125

Then divide on both sides by tan 34◦

d tan 34◦

tan 34◦ = 125
tan 34◦

d ≈ 185.32

Example 3

Sometimes a problem involves both an angle of elevation and an angle of depres-
sion.

From the roof of a house 20 feet off the ground, the angle of elevation of the top
of an apartment building is 63◦and the angle of depression to the base of the
building is 24◦. How far away from the house is the apartment building? How
tall is the apartment building?
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d 63◦
24◦

20 ft. 20 ft.

If we work on the bottom triangle first, then we know that the height of the tri-
angle is 20 ft. and the angle opposite this side is 24◦. So, we can say that:

tan 24◦ = 20
d

d = 20
tan 24◦

d ≈ 45ft.

Now that we know that the apartment building is 45 feet away, we can use the
upper triangle to determine the height ofthe building.

45 ft. 63◦
24◦

20 ft. 20 ft.

b

tan 63◦ = b
45

45 ∗ tan 63◦ = b

88.3ft. ≈ b

20 + 88.3 = 108.3ft.

Since the variable b only represents the part of the building that is in the second
triangle, we need to add 20 feet to b to find the actual height of the building.
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Problems on bearing and direction

Some applications of trigonometry involve ship navigation. One common method
used to describe direction in this type of problem is what is known as bearing.
Bearing describes a direction by the angle deviation from north or south. For
example, the direction we typically describe as northeast is exactly halfway be-
tween north and east. The bearing for northeast would be N45◦E, and is read as
“Forty-five degrees east of north.”

EW

N

S

NE

45◦

Forty-five degrees East of North: N45◦E

Here are a few examples of what a bearing looks like in a N-S-E-W diagram.

EW

N

S
23◦

Twenty-three degrees West of South: S23◦W
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EW

N

S

60◦

Sixty degrees West of North: N60◦W

Example 4

Santa Rosa, California is 7 miles due north of Rohnert Park. Bodega Bay is 19
miles due west of Rohnert Park (as the crow flies). What is the bearing of Santa
Rosa from Bodega Bay?

First, it would be helpful to draw a diagram to represent the situation:

Rohnert ParkBodega Bay

Santa Rosa

7 mi.
19 mi.

To answer the question we’ll need another diagram:

EW

N

S

Bodega Bay

Santa Rosa

θ
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If we knew the angle θ, then we could conclude that the bearing of Santa Rosa
from Bodega Bay is θ degrees East of North. From the previous diagram:

Rohnert ParkBodega Bay

Santa Rosa

7 mi.
19 mi.α

we can see that we can’t find θ directly, but we can find the complement of θ.

tanα = 7
19

α ≈ 20.2◦

Therefore, θ ≈ 90◦ − 20.2◦ ≈ 69.8◦

That means that the bearing of Santa Rosa from Bodega Bay isN69.8◦E, or 69.8◦East
of North.
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Exercises 8.4

Round answers to the nearest 10th.

1. From the top of a lighthouse 180 feet above sea level, the angle of depres-
sion to a ship in the ocean is 28◦. How far is the ship from the base of the light-
house?

2. A helicopter that is 700 feet in the air measures the angle of depression to a
landing pad as 24◦. How far is the landing pad from the point directly beneath
the helicopter’s current position?

3. An 88 foot tree casts a shadow that is 135 feet long. What is the angle of
elevation of the sun?

4. A 275 foot guy wire is attached to the top of a communication tower. If the
wire makes an angle of 53◦with the ground, how tall is the tower?

5. A woman standing on a hill sees a building that she knows is 55 feet tall.
The angle of depression to the bottom of the building is 27◦and the angle of el-
evation to the top of the building is 35◦. Find the straight line distance from the
woman to the building.

27◦
35◦ d=? 55 ft.
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6. To measure the height of the cloud cover at an airport, a spotlight is shined
upward at an angle of 62◦. An observer 1000 feet away measures the angle of
elevation to the spotlight to be 36◦. Find the height of the cloud cover.

62◦36◦

h=?

1000 ft.

7. At ground level, a water tower is 430 feet from the base of a building. From
one of the upper floors of the building, the angle of elevation to the top of the
water tower is 15◦and the angle of depression to the bottom of the water tower is
28◦. How tall is the water tower? How high off the ground is the observer?

8. A small airplane is flying at the altitude of 7000 feet following a straight
road directly beneath it. A car in front of the airplane is sighted with an angle of
depression of 72◦and a car behind the plane is sighted with an angle of depression
of 48◦. How far apart are the cars?

9. From a point on the floor, the angle of elevation to the top of a doorway is
43◦. The angle of elevation to the ceiling directly above the doorway is 56◦. If the
ceiling is 10 feet above the floor, how high is the doorway? How far in front of
the doorway were the angles of elevation measured?

10. A man standing on the roof of a building 70 feet high looks at the building
next door. The angle of depression to the roof of the building next door is 36◦.
The angle of depression to the bottom of the building next door is 65◦. How tall
is the building next door?

11. A boat leaves the harbor and travels 30 miles in the direction of N38◦W .
The boat turns 90◦and then travels in the direction S52◦W for 12 miles. At that
time, how far is the boat from the harbor and what is the bearing of the boat from
the harbor entrance?
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12. A man walking in the desert travels 1.6 miles in the direction S57◦E. He
then turns 90◦and continues walking for 3.2 miles in the direction N33◦E. At
that time, how far is he from his starting point and what is his bearing from the
starting point?

13. Madras, Oregon is 26 miles due north of Redmond. Prineville is due east
of Redmond and S34◦42′E from Madras. How far is Prineville from Redmond?

14. Raymond, Washington is 22 miles due south of Aberdeen. Montesano is
due east of Aberdeen and N26◦34′E from Raymond. How far is Montesano from
Raymond?

15. A boat travels on a course bearing of S41◦40′W for 84 miles. How far south
and how far west is the boat from its starting point?

16. A boat travels on a course bearing ofN17◦10′E for 10 miles. How far north
and how far east is the boat from its starting point?
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8.5 More Applications

Sometimes solving problems involving right triangles requires the use of a sys-
tem of equations. A common method for determining the height of an object
whose base is inaccessible is that of measuring the angle of elevation from two
different places in front of the object. If you measure the angle of elevation to the
top of of a radio antenna as 74◦, then walk back 50 feet and measure the angle of
elevation to the top of the antenna as 61◦, then we would have something like the
diagram below:

74◦61◦

50 ft.

One of the first things we can do is introduce some labels for the unknown dis-
tances:

74◦61◦

50 ft.

h

x

Then, we can say that:

tan 74◦ =h
x

tan 61◦ = h
x+50
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To solve this system of equations, we’ll set the first one equal to h:

tan 74◦ =h
x

x ∗ tan 74◦ = h

Then, substitute this into the second equation:

tan 61◦ = h
x+50

tan 61◦ =x tan 74◦

x+50

Multiply on both sides by x+ 50:

(x+ 50) tan 61◦ =x tan 74◦

x+50 (x+ 50)

So,

(x+ 50) tan 61◦ = x tan 74◦

There are two options to solve this equation - we can hold on to the tangents
as they are and solve for x in terms tan 74◦ and tan 61◦, or we can approximate
tan 74◦ and tan 61◦ and generate an approximate value for x and h. First we’ll
approximate:

(x+ 50) tan 61◦ = x tan 74◦

(x+ 50) ∗ 1.804 ≈ 3.4874x

1.804x+ 90.2024 ≈ 3.4874x

90.2024 ≈ 1.6834x
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53.58 ≈ x

x ∗ tan 74◦ = h

53.58 ∗ tan 74◦ ≈ h

186.87 feet ≈ h

The other method is a little tricky algebraically:

(x+ 50) tan 61◦ = x tan 74◦

x tan 61◦ + 50 tan 61◦ = x tan 74◦

50 tan 61◦ = x tan 74◦ − x tan 61◦

50 tan 61◦ = x(tan 74◦ − tan 61◦)

50 tan 61◦

(tan 74◦−tan 61◦)= x

At this point, you can approximate the value of x and solve for h, or express the
value of h exactly as

tan 74◦∗ 50 tan 61◦

(tan 74◦−tan 61◦)= h
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Exercises 8.5

1. Find the indicated height h.

49.3◦29.6◦

392 ft.

h

2. Find the indicated height h.

52.5◦41.2◦

168 ft.

h

3. A small airplane flying at an altitude of 5300 feet sights two cars in front of
the plane traveling on a road directly beneath it. The angle of depression to the
nearest car is 62◦and the angle of depression to the more distant car is 41◦. How
far apart are the cars?

4. A hot air balloon is flying above a straight road. In order to estimate their
altitude, the people in the balloon measure the angles of depression to two con-
secutive mile markers on the same side of the balloon. The angle to the closer
marker is 17◦and the angle to the farther one is 13◦. At what altitude is the bal-
loon flying?

5. To estimate the height of a mountain, the angle of elevation from a spot
on level ground to the top of the mountain is measured to be 32◦. From a point
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1000 feet closer to the mountain, the angle of elevation is measured to be 35◦.
How high is the mountain above the ground from which the measurements were
taken?

6. The angle of elevation from a point on the ground to the top of a pyramid
is 35◦30′. The angle of elevation from a point 135 feet farther back to the top of
the pyramid is 21◦10′. What is the height of the pyramid?

7. An observer in a lighthouse 70 feet above sea level sights the angle of de-
pression of an approaching ship to be 15◦50′. A few minutes later the angle of
depression is sighted at 35◦40′. Find the distance traveled by the ship during that
time.

8. To estimate the height of a tree, one forester stands due west of the tree
and another forester stands due north of the tree. The two foresters are the same
distance from the base of the tree and they are 45 feet from each other. If the angle
of elevation for each forester is 40◦, how tall is the tree?

9. A ship is anchored off of a long straight shoreline that runs east to west.
From two observation points located 10 miles apart on the shoreline, the bearings
of the ship from each observation point are S35◦E and S17◦W . How far from
shore is the ship?

10. From fire lookout Station Alpha the bearing of a forest fire isN52◦E. From
lookout Station Beta, sited 6 miles due east of Station Alpha, the bearing isN38◦W .
How far is the fire from Station Alpha?

11. From a point 200 feet from the base of a church, the angle of elevation
to the top of the steeple is 28◦, while the angle of elevation to the bottom of the
steeple is 20◦. How high off the ground is the top of the steeple?

12. A television tower 75 feet tall is installed on the top of a building. From a
point on the ground in front of the building, the angle of elevation to the top of
the tower is 62◦and the the angle of elevation to the bottom of the tower is 44◦.
How tall is the building?



Chapter 9

Graphing the Trigonometric
Functions

9.1 Trigonometric Functions of Non-Acute Angles

In Chapter 1, we learned about the trigonometric functions of positive acute an-
gles that occur within right triangles. If we wish to extend the definition of the
trigonometric functions, then we need to define how to determine the values for
the sine and cosine of other angles. To do this, consider a right triangle drawn on
the coordinate axes. The positive acute angle θ will be the angle created between
the x-axis and the hypotenuse of the triangle. The lengths of the two legs of the
triangle will be the x and y coordinates of a point in the first quadrant.

1

x

y

(x, y)

θ

383
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1

x

y

(x, y) = (cos θ, sin θ)

θ

opposite

adjacent

In the picture above we see a triangle in the first quadrant with a hypotenuse of
1. In this situation, the value of sin θ =

opp
hyp=

y
1 = y, which is just the y-coordinate

of the point at the top of the triangle. Correspondingly, the value of cos θ =
adj
hyp=

x
1 = x, or the value of the x-coordinate of the same point.

This allows us to find the sine or cosine for what are known as the quadrantal
angles - the angles that are multiples of 90◦. If we look at the unit circle (the circle
with a radius of 1), then we can see the values of the sine and cosine for these
angles.

(cos 0◦, sin 0◦)

(1, 0)

(cos 90◦, sin 90◦)
(0, 1)

(cos 180◦, sin 180◦)

(−1, 0)

(cos 270◦, sin 270◦)
(0,−1)
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In the previous diagram, we see the values for the sine and cosine of the quad-
rantal angles:

cos 0◦ = 1 cos 90◦ = 0 cos 180◦ = −1 cos 270◦ = 0
sin 0◦ = 0 sin 90◦ = 1 sin 180◦ = 0 sin 270◦ = −1

If we take a radius of length 1 and rotate it counter-clockwise in the coordinate
plane, the x and y coordinates of the point at the tip will correspond to the values
of the cosine and sine of the angle that is created in the rotation. Let’s look at an
example in the second quadrant. If we rotate a line segment of length 1 by 120◦,
it will terminate in Quadrant II.

1

x = −0.5

y =

√
3
2

(cos θ, sin θ)

(−0.5,
√
3
2 )

θ=120◦

60◦

In the diagram above we notice several things. The radius of length 1 has been
rotated by 120◦into Quadrant II. If we then drop a perpendicular line from the
endpoint of the radius to the x-axis, we create a triangle in Quadrant II. Notice
that the angle supplementary to 120◦appears in the triangle and this allows us to
find the lengths of the sides of the triangle and hence the values for the x and y
coordinates of the point at the tip of the radius.

Whenever an angle greater than 90◦is created on the coordinate axes, simply drop
a perpendicular to the x-axis. The angle created is the reference angle. The values
of the trigonometric functions of the angle of rotation and the reference angle will
differ only in their sign (+,−). On the next page are examples for Quadrants II,
III, and IV.
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1

x = cos θ < 0

y = sin θ > 0

(cos θ, sin θ)

θ
180◦−θ

Quadrant II

In Quadrant II, the cosine is negative and the sine is positive.

1

x = cos θ < 0

y = sin θ < 0

(cos θ, sin θ)

θ

θ−180◦

Quadrant III

In Quadrant III, the cosine and sine are both negative.
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1

x = cos θ > 0

y = sin θ < 0

(cos θ, sin θ)

θ

360◦−θ

Quadrant IV

In Quadrant IV, the cosine is positive and the sine is negative.

The process for finding reference angles depends on which quadrant the angle
terminates in.

Examples

Find the reference angle for the following angles:

1. 128◦ 2. 241◦ 3. 327◦

1. An angle of 128◦terminates in Quadrant II. To find the reference angle, we
would subtract the angle from 180◦: 180◦ − 128◦ = 52◦.

128◦
52◦



388 CHAPTER 9. GRAPHING THE TRIGONOMETRIC FUNCTIONS

2. An angle of 241◦terminates in Quadrant III. To find the reference angle, we
would subtract 180◦from the angle: 241◦ − 180◦ = 61◦.

241◦

61◦

3. An angle of 327◦terminates in Quadrant IV. To find the reference angle, we
subtract the angle from 360◦: 360◦ − 327◦ = 33◦.

327◦

33◦

Once we know the reference angle, we can find the trigonometric functions for
the original angle itself. In example 1, we had 128◦, an angle in Quadrant II with
a reference angle of 52◦. Therefore, if we want to find the sine, cosine and tangent
of 128◦, then we should find the sine, cosine and tangent of 52◦and apply the
appropriate positive or negative sign.
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Example 1 Quadrant II

In Quadrant II, x-coordinates are negative and y-coordinates are positive. This
means that cos θ < 0 and sin θ > 0. The values for this process are given below:

sin 52◦ ≈ 0.7880 sin 128◦ ≈ 0.7880
cos 52◦ ≈ 0.6157 cos 128◦ ≈ −0.6157
tan 52◦ ≈ 1.280 tan 128◦ ≈ −1.280

Example 2 Quadrant III

In Quadrant III, x-coordinates are negative and y-coordinates are also negative.
This means that cos θ < 0 and sin θ < 0. The values for this process are given
below:

sin 61◦ ≈ 0.8746 sin 241◦ ≈ −0.8746
cos 61◦ ≈ 0.4848 cos 241◦ ≈ −0.4848
tan 61◦ ≈ 1.8040 tan 241◦ ≈ 1.8040

Example 3 Quadrant IV

In Quadrant IV, x-coordinates are positive and y-coordinates are negative. This
means that cos θ > 0 and sin θ < 0. The values for this process are given below:

sin 33◦ ≈ 0.5446 sin 327◦ ≈ −0.5446
cos 33◦ ≈ 0.8387 cos 327◦ ≈ 0.8387
tan 33◦ ≈ 0.6494 tan 327◦ ≈ −0.6494

sin θ > 0

cos θ > 0

tan θ > 0

sin θ > 0

cos θ < 0

tan θ < 0

sin θ < 0

cos θ < 0

tan θ > 0

sin θ < 0

cos θ > 0

tan θ < 0
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In Quadrant I, ALL the trigonometric functions are positive.

In Quadrant II, the SIN function is positive (as well as the CSC).

In Quadrant III, the TAN function is positive (as well as the COT).

In Quadrant IV, the COS function is positive (as well as the SEC).

AllSin

Tan Cos

A common mneumonic device to remember these relationships is the phrase:
“All Students Take Calculus.” This can help you remember which trigonometric
functions are positive in each of the four quadrants.

AS

T C
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Reference Angles for Negative Angles

Negatively measured angles rotate in a clockwise direction.

1

(cos θ, sin θ)

θ
θ + 180◦

There are a variety of methods for finding the reference angle for a negatively
valued angle. You can find a positive angle that is co-terminal with the negative
angle and then find the reference angle for the positive angle. You can also drop
a perpendicular to the x-axis to find the reference angle for the negative angle
directly.

For example, the angle −120◦ terminates in Quadrant III and is co-terminal with
the positive angle 240◦. Either way, when you drop a perpendicular to the x-axis,
you find that the reference angle is 60◦.

If you are given the value of one of the trigonometric functions of an angle θ,
and know which quadrant θ is located in, you can find the other trigonometric
functions for that angle.

Example

Given θ in Quadrant IV with cos θ =1
5 , find sin θ and tan θ.

If cos θ =1
5 , then the adjacent side and the hypotenuse must be in a ratio of 1:5.
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We can label these sides as 1 and 5 and then find the length of the third side in
the triangle. This will allow us to find sin θ and tan θ.

5

1

√
24

θ

360◦−θ

Using the Pythagorean Theorem:

52 = 12 + s2

25− 1 = s2

√
24 = s

we find that the side opposite the reference angle for θ is
√

24 or 2
√

6. We can
now find sin θ and tan θ:

sin θ =
√
24
5

and

tan θ =
√
24
1 =

√
24



9.1. TRIGONOMETRIC FUNCTIONS OF NON-ACUTE ANGLES 393

In the problems in this section, the reciprocal functions secant, cosecant and
cotangent are used. Remember that:

sec θ = 1
cos θ = hyp

adj

csc θ = 1
sin θ = hyp

opp

cot θ = 1
tan θ = adj

opp

Exercises 9.1

Determine the quadrant in which the angle θ lies.

1. cos θ > 0, tan θ > 0 2. sin θ < 0, cos θ > 0

3. sec θ > 0, tan θ < 0 4. cot θ > 0, cos θ < 0

5. sin θ > 0, cos θ < 0 6. sin θ > 0, cot θ > 0

7. sin θ < 0, cos θ < 0 8. csc θ > 0, cot θ < 0

Determine which quadrant the given angle terminates in and find the reference
angle for each.

9. 195◦ 10. 330◦ 11. 120◦

12. 210◦ 13. 135◦ 14. 300◦

15. −100◦ 16. 225◦ 17. 315◦

18. 5π
4 19. −2π

3 20. 7π
3

21. 11π
4 22. 7π

6 23. 11π
6
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Find sin θ, cos θ and tan θ in each problem.

24. sin θ =−12
13 , θ in Quadrant IV 25. cos θ =−4

5 , θ in Quadrant II

26. cos θ =1
4 , θ in Quadrant I 27. tan θ =3

2 , θ in Quadrant III

28. tan θ =−4
5 , θ in Quadrant II 29. sin θ =3

8 , θ in Quadrant II

30. sin θ =−1
3 , θ in Quadrant III 31. tan θ = 5, θ in Quadrant I

32. sec θ = −2, tan θ < 0 33. cot θ =
√

3, cos θ < 0

34. tan θ =−1
3 , sin θ < 0 35. csc θ =

√
2, cos θ > 0

36. cos θ =−2
5 , tan θ > 0 37. sec θ = 2, sin θ < 0

38. sin θ = 1√
2

, cos θ > 0 39. sin θ =−2
3 , cot θ > 0
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9.2 Graphing Trigonometric Functions

We have seen how to determine the values of trigonometric functions for angles
terminating in Quadrants II, III, and IV. This allows us to make a graph of the
values of the sine function for any angle. In the chart below, I have listed the
values for the sine function for angles between 0◦and 360◦.

θ sin θ θ sin θ
0◦ = 0 100◦ ≈ 0.9848
10◦ ≈ 0.1737 110◦ ≈ 0.9397
20◦ ≈ 0.3420 120◦ ≈ 0.8660
30◦ = 0.5 130◦ ≈ 0.7660
40◦ ≈ 0.6428 140◦ ≈ 0.6428
50◦ ≈ 0.7660 150◦ = 0.5
60◦ ≈ 0.8660 160◦ ≈ 0.3420
70◦ ≈ 0.9397 170◦ ≈ 0.1737
80◦ ≈ 0.9848 180◦ = 0
90◦ = 1

θ sin θ θ sin θ
180◦ = 0 280◦ ≈ −0.9848
190◦ ≈ −0.1737 290◦ ≈ −0.9397
200◦ ≈ −0.3420 300◦ ≈ −0.8660
210◦ = −0.5 310◦ ≈ −0.7660
220◦ ≈ −0.6428 320◦ ≈ −0.6428
230◦ ≈ −0.7660 330◦ = −0.5
240◦ ≈ −0.8660 340◦ ≈ −0.3420
250◦ ≈ −0.9397 350◦ ≈ −0.1737
260◦ ≈ −0.9848 360◦ = 0
270◦ = −1

On the next page we see a graph of these points plotted on the coordinate axes.
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0 30 60 90 120 150 180 210 240 270 300 330 360

−1

−1
2

1
2

1

In graphing trigonometric functions, we typically use radian measure along the
x-axis, so the graph would generally look like this:

0 π
2

π 3π
2

2π

−1

−1
2

1
2

1

zero

maximum

zero

minimum

zero

The graph of the standard sine function begins at the zero point, then rises to
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the maximum value of 1 between 0 and π
2 radians. It then decreases back to 0 at

π radians before crossing over into the negative values and hitting its minimum
value at 3π

2 radians. It then goes back up to 0 at 2π radians before starting all over
again.

0 π
2

π 3π
2

2π

−1

−1
2

1
2

1

zero

maximum

zero

minimum

zero

The standard cosine graph behaves in a similar but slightly different way. We
saw earlier that cos 0◦ = 1, so the cosine graph would start at the point (0, 1), then
gradually decrease to zero. A picture of the standard cosine graph would look
like the figure below:

0 π
2

π 3π
2

2π

−1

−1
2

1
2

1
maximum

zero

minimum

zero

maximum

The sine and cosine graphs are sometimes referred to as a “sine wave” or “sinusoid”
and can be very useful in modeling phenomena that occur in waves. Examples
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of this are the rise and fall of the tides; sound waves and music; electricity; and
the length of day throughout the year. The standard sine and cosine graphs must
be modified to fit a particular application so that they will effectively model the
situation. The ideas that we examine next will explain how to modify the sine
and cosine graphs to fit a variety of different situations.

There are four aspects to the sine and cosine functions to take into consideration
when making a graph. These are:

1) The Amplitude of the graph
2) The Period of the graph
3) The Vertical Shift of the graph
4) The Phase Shift of the graph

Amplitude

The amplitude of a sine or cosine function refers to the maximum and minimum
values of the function. In the standard sine and cosine graphs, the maximum
value is 1 and the minimum value is−1. The amplitude is one-half the difference
between the maximum and minimum values. In the standard graphs the differ-
ence between the maximum and minimum is 1 − (−1) = 2; one-half of this is 1,
so the amplitude of the standard sine and cosine functions is 1.

The value of the amplitude is also the absolute value of the coefficient of the sine
or cosine expression. In the standard graph, y = sinx, the coefficient of the sine
function is 1, so the amplitude is 1. In the function y = 2 sinx, all the y values
will be multiplied by 2 and the amplitude of the function will be 2. The graph for
y = 2 sin x is shown on the next page.



9.2. GRAPHING TRIGONOMETRIC FUNCTIONS 399

y = 2 sin x

0 π
2

π 3π
2

2π

−2

−1

1

2

zero

maximum

zero

minimum

zero

A negative value of the coefficient in front of a trigonometric function will not
change the Amplitude of the function, but it will change the shape of the function.
For example, the function:

y = − sinx

has an amplitude of 1, but the graph will be different from the graph y = sinx.
All of the y-values of the function y = − sinx will have the opposite sign as the
y-values of the function y = sinx. The graph for y = − sinx appears below:

0 π
2

π 3π
2

2π

−1

−1
2

1
2

1

zero

minimum

zero

maximum

zero

Notice that, because of the negation of the y-values, the graph begins at 0, as does
the standard sine function, but the graph of y = − sinx first goes to a minimum
value before crossing through 0 again up to the maximum value.
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Likewise, the graph of y = − cosx begins at the minimum value before crossing
through 0 and going to the maximum value, back through 0 and ending at the
minimum value again.

0 π
2

π 3π
2

2π

−1

−1
2

1
2

1

minimum

zero

maximum

zero

minimum

y = − cosx

Period

The period of the graph refers to how long it takes the graph to complete one full
cycle of values. In the standard sine and cosine functions, the period is 2π radians.
The function completes a single “wave” and returns to its starting place between
0 and 2π. A coefficient in front of the variable in a sine or cosine function will
affect the period of the graph. In the general expression y = A sinBx, the value
of A affects the amplitude of the function and the value of B affects the period of
the function.

If we examine the table of values for the standard sine function, we can see how
the coefficient of the x-variable will affect the period of the graph. Starting with
the table from the standard sine function:
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θ sin θ θ sin θ
0◦ = 0 100◦ ≈ 0.9848
10◦ ≈ 0.1737 110◦ ≈ 0.9397
20◦ ≈ 0.3420 120◦ ≈ 0.8660
30◦ ≈ 0.5 130◦ ≈ 0.7660
40◦ ≈ 0.6428 140◦ ≈ 0.6428
50◦ ≈ 0.7660 150◦ ≈ 0.5
60◦ ≈ 0.8660 160◦ ≈ 0.3420
70◦ ≈ 0.9397 170◦ ≈ 0.1737
80◦ ≈ 0.9848 180◦ = 0
90◦ = 1

θ sin θ θ sin θ
180◦ = 0 280◦ ≈ −0.9848
190◦ ≈ −0.1737 290◦ ≈ −0.9397
200◦ ≈ −0.3420 300◦ ≈ −0.8660
210◦ ≈ −0.5 310◦ ≈ −0.7660
220◦ ≈ −0.6428 320◦ ≈ −0.6428
230◦ ≈ −0.7660 330◦ = −0.5
240◦ ≈ −0.8660 340◦ ≈ −0.3420
250◦ ≈ −0.9397 350◦ ≈ −0.1737
260◦ ≈ −0.9848 360◦ = 0
270◦ = −1

If we create a similar table for the function y = sin(2x) , then we can see how
this will affect the graph:

θ 2θ sin(2θ) θ 2θ sin(2θ)
0◦ 0◦ = 0 100◦ 200◦ ≈ −0.3420
10◦ 20◦ ≈ 0.3420 110◦ 220◦ ≈ −0.6428
20◦ 40◦ ≈ 0.6428 120◦ 240◦ ≈ −0.8660
30◦ 60◦ ≈ 0.8660 130◦ 260◦ ≈ −0.9848
40◦ 80◦ ≈ 0.9848 140◦ 280◦ ≈ −0.9848
50◦ 100◦ ≈ 0.9848 150◦ 300◦ ≈ −0.8660
60◦ 120◦ ≈ 0.8660 160◦ 320◦ ≈ −0.6428
70◦ 140◦ ≈ 0.6428 170◦ 340◦ ≈ −0.3420
80◦ 160◦ ≈ 0.3420 180◦ 360◦ = 0
90◦ 180◦ = 0
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In the previous table we can see that the function y = sin(2x) completes one full
cycle between 0 and π radians instead of the the standard 0 to 2π radians. The
graph for these points is shown below. The coordinates for the x-values between
π and 2π radians are shown as well.

0 30 60 90 120 150 180 210 240 270 300 330 360

−1

−1
2

1
2

1

In this graph, you can see that there are two complete waves between 0 and 2π
radians, or one complete wave between 0 and π radians. So, in a sine or cosine
function of the form y = A sinBx, the amplitude will be |A| and the period will
be 2π

B . The standard graph for one complete cycle of the function y = sin(2x) is
shown below:

0 π
4

π
2

3π
4

π

−1

1

Notice that, because the period has been cut in half, the x-coordinates that cor-
respond to the maximum, minimum, and zero y-coordinates are cut in half as



9.2. GRAPHING TRIGONOMETRIC FUNCTIONS 403

well. Let’s look at some examples of how the Amplitude and the Period affect
the graphs of the sine and cosine functions.

Example 1

Graph one full period of the function y = −2 sin 3x.

The amplitude in this case is 2, but since the coefficient is negative, this sine graph
will begin by first going to the minimum value. The period of the graph will be
2π
B , or in this case 2π

3 instead of 2π. To determine the x-values for the maximum,
minimum and zero y-values, we should examine how these are determined for
the standard sine curve.

The maximum, minimum and zero y-values for a standard sine curve occur at
the quadrantal angles, that is to say, the angles that separate the four quadrants
from each other. The quadrantal angles are 0◦or 0 radians, 90◦or π2 radians, 180◦or
π radians, 270◦or 3π

2 radians and 360◦or 2π radians. These x-values produce the
“critical” y-values of the zero, maximum and minimum.

0 1
(1, 0)

0 radians
0◦

-1
(−1, 0)

π radians
180◦

1(0, 1)
90◦
π
2

radians

-1(0,−1) 3π
2

radians
270◦

In the standard sine or cosine graph, the distance from each “critical value” of the
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graph to the next is always a “jump” of π2 along the x-axis. This is one-fourth of
the period: 2π

1 ∗
1
4 = π

2 . So, to determine the labels for the critical values of the
graph along the x-axis, we should take the new period and multiply by 1

4 .

The function we are working with is y = −2 sin 3x, so to find the new period we
calculated 2π

B , which was 2π
3 . Then, in order to label the x-axis properly we

should next take 2π
3 and multiply by 1

4 .

2π
3 ∗

1
4 = 2π

12 = π
6

So, the critical values along the x-axis will be:

1π
6 ,

2π
6 ,

3π
6 , and 4π

6

We want to express these in lowest terms, so we would label them as π6 ,
π
3 ,

π
2 , and

2π
3 . The graph will start at zero, then (because the value of the coefficient A is

negative) it will go down to a minimum value at π6 , back to zero at π3 , then up to
the maximum at π2 and back down to zero at 2π

3 to complete one full period of the
graph. The graph for this function is pictured below. Notice that the minimum
y-value is −2 and the maximum y-value is 2 because A = 2.

0 π
6

π
3

π
2

2π
3

−2

−1

1

2

y = −2 sin 3x

Let’s look at an example using the cosine graph.
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Example 2

Graph one full period of the function y = 5 cos 2
3
x.

The amplitude of the function is 5 because A = 5, so the maximum y-value will
be 5 and the minimum y-value will be −5. The period of the graph will be 2π

B ,
which in this case is 2π

2
3

= 2π∗ 3
2 = 3π. So the period is 3π. The critical values

along the x-axis will start at 0 and be separated by “jumps” of 3π∗14 = 3π
4 . So the

critical values along the x-axis will be:

0, 3π
4 , 6π

4 , 9π
4 , and 12π

4

We want to express these in lowest terms so we would label them as 3π
4 , 3π

2 , 9π
4 ,

and 3π. The graph will start at the maximum y-value of 5 at x = 0, then it will go
to zero at x = 3π

4 , down to the minimum y-value of −5 at x = 3π
2 , back through

0 at x = 9π
4 , and then up to the maximum y-value of 5 at x = 3π to complete one

full period of the graph. The graph of y = 5 cos 2
3
x. is shown below.

0 3π
4

3π
2

9π
4

3π

−5

5

y = 5 cos 2
3
x
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Determining an equation from a graph

Sometimes, you will be given a graph and asked to determine an equation which
satisfies the conditions visible in the graph. So far, we have only discussed two of
the possible transformations of a trigonometric function - the amplitude and pe-
riod. Remember that in an equation of the form y = A sinBx or y = A cosBx, the
amplitude is |A| and the period is 2π

B . So, to write an equation for a trigonometric
function, we need to determine the values of A and B.

Example 3

Deterimine an equation that satisfies the given graph.

0 π
4

π
2

3π
4

π

−3

−2

−1

1

2

3

First note that the maximum y-value for the graph is 3 and the minimum is −3.
This means that the amplitude is 3. Next we see that there is one complete pe-
riod of the function between 0 and π, this means that the period is π. From this
information, we know that A = 3 and that the period for the graph is π. Since the
period P =2π

B , then we know that B =2π
P . So, B =2π

π = 2.
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Lastly, we notice that this graph starts with a y-value of 0, then goes to the max-
imum, back through 0 to the minimum and then back to zero to form one com-
plete wave. This is the signature of a sine function, so the answer to this problem
would be:

y = 3 sin 2x

Example 4

Deterimine an equation that satisfies the given graph.

0 9π
16

9π
8

27π
16

9π
4

−5

5

First note that the maximum y-value for the graph is 5 and the minimum is −5.
This means that the amplitude is 5. Next we see that there is one complete period
of the function between 0 and 9π

4 , this means that the period is 9π
4 . From this

information, we know that A = 5 and that the period for the graph is 9π
4 . Since

P =2π
B , and B =2π

P , then B = 2π
( 9π4 )

= 2π∗ 4
9π=8

9 .
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Lastly, this graph starts with a y-value of 5, which is the maximum y-value. It
then goes to 0 and down to the minimum, back through 0 and then back to the
maximum to form one complete wave. Since this is the signature of the cosine
function, the answer to this problem would be:

y = 5 cos89x
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Exercises 9.2

Determine the amplitude and the period for each problem and graph one period
of the function. Identify important points on the x and y axes.

1. y = cos 4x 2. y = − sin 2x

3. y = 3 sin 3x 4. y = −2 cos 5x

5. y = 4 cos 1
2
x 6. y = 2 sin 1

3
x

7. y = −1
2

sin 2
3
x 8. y = −3 cos 3

5
x

9. y = −4 sin 6x 10. y = 3 sin 4x

11. y = 2 cos 3
2
x 12. y = 3 cos 5

3
x

Determine an equation that satifies the given graph.

13.

0 π
6

π
3

π
2

2π
3

−1

1

14.

0 π
8

π
4

3π
8

π
2

−2

2
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15.

0 3π
2

3π 9π
2

6π

−4

4

16.

0 π 2π 3π 4π

−3

3

17.

0 3π
8

3π
4

9π
8

3π
2

−7

7

18.

0 5π
4

5π
2

15π
4

5π

−1.5

1.5

19.

0 0.2 0.4 0.6 0.8

−2

2

20.

0 1 2 3 4

−6

6
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9.3 The Vertical Shift of a Trigonometric Function

If a constant is added or subtracted to a trigonometric function, this will affect
the y-values of the function. If we consider the function y = 5 + sinx, then each
of the standard y-values would have 5 added to it, which would shift the graph
up 5 units.

The chart below considers just the quadrantal values for the sine function:

θ sin θ 5 + sin θ
0 0 5
π/2 1 6
π 0 5

3π/2 −1 4
2π 0 5

0 π
2

π 3π
2

2π

−2

−1

1

2

3

4

5

6

7

y = sinx

y = 5 + sinx
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Sometimes the x-axis is drawn through the line that is the new “zero” or “mid-
line” for the function - in this case it would be y = 5.

π
2

π 3π
2

2π

3

4

6

7

y = 5 + sinx

Likewise, a negative constant would move the graph down, as each y-value
would be less than the corresponding y-value in the standard sine function.

0 π
2

π 3π
2

2π

−3

−2

−1

1

2

y = sinx

y = −2 + sin x

In the previous examples the constant has been written in front of the sine func-
tion for clarity. Often the constant is written after the function:

y = sinx+ 5
or

y = sinx− 2
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We have now examined three of the four transformations of trigonometric func-
tions that are discussed in this chapter - amplitude, period and vertical shift. A
general equation for a sinusoid that involves these three transformations would
be:

y = A sin(Bx) +D
or

y = A cos(Bx) +D

In determining an equation from a graph that involves a vertical shift, the value
of A will be half the distance between the maximum and minimum values:

A =max−min
2

and the value of D will be the average of the maximum and minimum values:

D =max+min
2

Example

Determine an equation that satisfies the given graph.

0 3π
4

3π
2

9π
4

3π

−2

2

4

6
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In this graph, the maximum y-value is 6 and the minimum y-value is −2. The
average of these two:

max+min
2 =

6+(−2)
2 =4

2= 2 = D

is the value of D, the vertical shift.

The distance between 6 and −2 is 6 − (−2) = 8. Half the distance between the
max and min is 4, which is the value of A.

max−min
2 =

6−(−2)
2 =8

2= 4 = A

The graph completes one full cycle between 0 and 3π, so the period would be 3π

and the value of B would be B =2π
P =2π

3π=2
3= B. So a correct equation for the

graph would be:

y = 4 sin2
3x+ 2
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Exercises 9.3

Determine the Amplitude, Period and Vertical Shift for each function below and
graph one period of the function. Identify the important points on the x and y
axes.

1. y = sinx+ 1 2. y = cosx− 1

3. y = 2 cos x− 1
2

4. y = 5 sin x+ 4

5. y = − sin(1
4
x) + 1 6. y = − cos(2x) + 7

7. y = 1
3

sin(πx)− 4 8. y = −1
2

cos(2πx) + 2

9. y = 5 cos(1
2
x) + 1 10. y = 4 sin(1

3
x)− 1

11. y = 3 cos x+ 2 12. y = 2 sin x+ 3

13. y = 2− 4 cos(3x) 14. y = 5− 3 sin(2x)

Determine an equation that satifies the given graph.

15.

0 π
5

2π
5

3π
5

4π
5

−4

−2

2

4

16.

0
π
4

π
2

3π
4

π

−6
−4
−2

2
4
6
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17.

3π
4

3π
2

9π
4

3π

4

5

6

8

9

7

18.

π
2

π 3π
2

2π

−5

−4

−2

−1

−3

19.

π 2π 3π 4π

8

9

11

12

10

20.

2π
3

4π
3

2π 8π
3

−3

−2

0

1

−1
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9.4 Phase Shift

The last form of transformation we will discuss in the graphing of trigonometric
functions is the phase shift, or horizontal displacement. So far, we have con-
sidered the amplitude, period and vertical shift transformations of trigonometric
functions. In the standard equation y = A sin(Bx) + D, these corrrespond to the
coefficients A, B and D. Notice that the amplitude and vertical shift coefficients
(A and D), which affect the y-axis occur outside of the trigonometric function,
whereas the coefficient that affects the period of the graph along the x-axis oc-
curs within the sine function. This is true of the phase shift as well.

If we consider a general equation of:

y = A sin(Bx+ C) +D

the constant C will affect the phase shift, or horizontal displacement of the func-
tion. Let’s look at a simple example.

Example 1

Graph at least one period of the given function: y = sin(x+ π).
Be sure to indicate important points along the x and y axes.

Let’s examine this function by looking at a table of values.

x x+ π sin(x+ π)
0 π 0
π/2 3π/2 −1
π 2π 0

3π/2 5π/2 1
2π 3π 0
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Now let’s look at a graph of y = sin(x+ π) as compared to the standard graph of
y = sinx.

0−π
2

π
2

π 3π
2

2π

−1

1
y = sinx

0−π
2

π
2

π 3π
2

2π

−1

1
y = sin(x+ π)

Notice that if we take the standard graph of y = sinx and drag it backwards
along the x-axis a distance of π, we would have the graph of y = sin(x + π).
That’s because each x value is having π added to it, so to arrive at the x value that
produces a particular y-value, we would need to subtract π. Here’s an example:

x+ π y = sin(x+ π)
0 0
π/2 1
π 0

3π/2 −1
2π 0

In the table above we see the standard x and y values for the graph of the sine
function. In the table below, we add a column that shows the value that x would
need to be for x+ π to be the standard values:
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x x+ π y = sin(x+ π)
−π 0 0
−π/2 π/2 1

0 π 0
π/2 3π/2 −1
π 2π 0

Here’s a graph of these values:

0−π −π
2

π
2

π

−1

1

y = sin(x+ π)

This is the same graph of y = sin(x + π) that we saw on the previous page,
but anchored to different points on the x-axis. Either graph would be a correct
response to a question asking for at least one period of the graph of y = sin(x+π).

Let’s look at another example:

Example 2

Graph at least one period of the given function: y = sin(x+ π
3 ).

Be sure to indicate important points along the x and y axes.

In this simplified example, we really have only one transformation to worry
about - the phase shift. Notice that the amplitude, period and vertical shift have
all been left out. When considering a sine or cosine graph that has a phase shift, a
good way to start the graph of the function is to determine the new starting point
of the graph. In the previous example, we saw how the function y = sin(x + π)
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shifted the graph a distance of π to the left and made the new starting point of
the sine curve −π.

In graphing the standard sine curve we’re generally interested in the quadrantal
angles that produce the maximum, minimum and zero points of the graph. In
graphing the function y = sin(x+ π

3 ), we want to know which values of x will
produce the quadrantal angles when we add π

3 to them.

So, to determine the new starting point we want to know the solution to the
equation: x+π

3= 0

x+
π

3
= 0

−π
3
− π

3

x =−π
3

This is the new starting point for the graph y = sin(x+ π
3 ). Because this graph

has a standard period, the “jump” between each of the quadrantal angles will be
π
2 . To graph one period of a typical trigonometric function we’ll need at least five
quadrantal angle values. So, if our new starting point is−π

3 , then the next critical
value along the x-axis will be:

−π
3 + π

2 = −2π
6 + 3π

6 = π
6

Then the subsequent critical values would be:

π
6 + π

2 = π
6 + 3π

6 = 4π
6 = 2π

3

4π
6 + 3π

6 = 7π
6

7π
6 + 3π

6 = 10π
6 = 5π

3

So the five critical values along the x-axis are:
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−2π
6 ,

π
6 ,

4π
6 ,

7π
6 and 10π

6

or, in reduced form:

−π
3 ,

π
6 ,

2π
3 ,

7π
6 and 5π

3

In order to graph the function, we would put these values along the x-axis and
plot the standard quadrantal y-values to match up with them:

0−π
3

π
6

2π
3

7π
6

5π
3

−1

1

The y-values for the sine function start at zero, go up to the maximum, back down
through zero to the minimum and then back to zero:

0−π
3

π
6

2π
3

7π
6

5π
3

−1

1

zero

max

zero

min

zero
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Connecting these points to make a sine curve produces the following graph:

0−π
3

π
6

2π
3

7π
6

5π
3

−1

1
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Exercises 9.4

Match each function with the appropriate graph.

1. y = cos(x−π4 ) 2. y = sin(x+π
4 )

3. y = cosx− 1 4. y = sinx+ 1

5. y = sin(x−π4 ) 6. y = 1− cosx

7. y = sinx− 1 8. y = cos(x+π
4 )

A.

−π
4

π
4

3π
4

5π
4

7π
4

−1

1

B.

0 π
2

π 3π
2

2π

−1

1

2

C.

0 π
2

π 3π
2

2π

−2

−1

1

D.

π
4

3π
4

5π
4

7π
4

9π
4

−1

1
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E.

0 π
2

π 3π
2

2π

−2

−1

1

F.

−π
4

π
4

3π
4

5π
4

7π
4

−1

1

G.

π
4

3π
4

5π
4

7π
4

9π
4

−1

1

H.

0 π
2

π 3π
2

2π

−2

−1

1

Sketch at least one period for each function. Be sure to include the important
values along the x and y axes.

9. y = sin(x+π
6 ) 10. y = cos(x−π6 )

11. y = cos(x−π3 ) 12. y = sin(x+π
3 )

13. y = sin(x−3π
4 ) 14. y = cos(x+3π

4 )

15. y = cos(x+2π
3 ) 16. y = sin(x−2π

3 )
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9.5 Combining the Transformations

In the previous sections, we have seen how the various transformations act on
the trigonometric functions and we have worked with the first three (amplitude,
period and vertical shift) in combination with each other. Combining the phase
shift with the other transformations is tricky because of the way that the period
and the phase shift interact with each other.

Now we have two standard equations for the sinusoid:

y = A sin(Bx+ C) +D
and

y = A cos(Bx+ C) +D

A and D, the amplitude and the vertical shift affect the y-axis, while B and C
affect the x-axis.

y-axis x-axis

Amplitude= |A| Period=2π
B

Vertical Shift= D Phase Shift=−C
B

Let’s look at an example in which we need to combine a change in the period of
the graph with a phase shift.

Example 1

Graph at least one period of the given function. Indicate the important values
along the x and y axes.

y = cos(4x+ π)

The transformations in this example only affect the x-axis. The period of the
function is 2π

B =2π
4 =π

2 . So, the function will complete one full cycle over a distance
of π2along the x-axis.
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However, because of the phase shift, this graph will not start at 0 and end at π2 . We
need to find the new starting point that is caused by the phase shift. So, we take
what is called the “argument,” or what it is we’re finding the cosine of: (4x + π)
and set that equal to zero.

4x+ π = 0
4x = −π
x =−π

4

This is our new starting point. To identify the critical values along the x-axis,
we’ll need to determine how far each “jump” would be given a period of π2 .

π
2∗

1
4=π

8

So, each subsequent critical value along the x-axis will be a distance of π8 from the
previous one. If we start at our new starting point for this function −π

4 , then if
we add π

8a total of 4 times, we will arrive at each of the five critical values for this
function.

−π
4+π

8=−2π
8 +π

8=−π
8

−π
8+π

8= 0

0+π
8=π

8

π
8+π

8=2π
8 =π

4

So the critical values along the x-axis would be:

−π
4 ,−π

8 , 0, π8 , and π
4

Notice that the distance between the starting point−π
4and the ending point π4 is

equal to the period we found at the beginning of the problem, which was π2 . Now
let’s graph the function:



9.5. COMBINING THE TRANSFORMATIONS 427

−π
4
−π

8
π
8

π
4

−1

1

Since there were no changes to the y-axis, the amplitude for the function is 1 and
the vertical shift is 0. Along the x-axis, we see a positive sine function that starts
at (−π

4 , 0) then goes up to (−π
8 , 1), back down through (0, 0) to (π8 ,−1) and back

up to (π4 , 0) to complete one full cycle of the graph.

Let’s look at an example in which there are some changes to the y-axis as well as
the x-axis.

Example 2

Graph at least one period of the given function. Be sure to identify critical values
along the x and y axes.

y =−5
2+ cos(3x− π)

Remember which coefficients affect which axis in graphing:

y-axis x-axis

Amplitude= |A| Period=2π
B

Vertical Shift= D Phase Shift=−C
B

In this example, the amplitude is 1, since there is no coefficient in front of the
cosine function. The vertical shift is −5

2 , which will shift the function down a
distance of 2.5 on the y-axis. So, the mid-line or “zero” points of the graph will
be at −2.5, the maximum y value will be −1.5 and the minimum y value will be
−3.5.
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Along the x-axis, the period for the graph will be 2π
B =2π

3 , since the coefficient B
in this problem is 3. To find the new starting point, we’ll take the argument of the
cosine function and set it equal to zero.

3x− π = 0

3x = π

x = π∗13=π
3

So, our new starting point will be at π
3 . To determine the other critical values

along the x-axis, we can find out how far each “jump” between the critical values
would be. To do this, we take the period (2π3 ) and divide it by 4 (or multiply by
1
4 ).

2π
3 ∗

1
4=2π

12=π
6

Now we can add this value to our new starting point four times to determine the
other critical values along the x-axis.

π
3+π

6=2π
6 +π

6=3π
6 =π

2

3π
6 +π

6=4π
6 =2π

3

4π
6 +π

6=5π
6

5π
6 +π

6= π

So the critical values along the x-axis would be:

2π
6 , 3π

6 , 4π
6 , 5π

6 , and 6π
6

or

π
3 , π2 , 2π

3 , 5π
6 , and π
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Again, notice that the distance along the x-axis from the starting point to the
ending point is the period: 2π

3 . Now let’s graph the function:

π
3

π
2

2π
3

5π
6

π

−4

−2

or

π
3

π
2

2π
3

5π
6

π

−3.5

−1.5

−2.5

Let’s look at one more example.

Example 3

Sometimes the coefficient B appears factored out of the argument as it does in
the problem below.

Graph at least one period of the given function. Be sure to include the critical
values along the x and y axes.

y = 4 sin 2(x+π
3 )− 1.

First let’s see how the x and y axes are affected by the transformations in this
problem.
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y-axis x-axis

Amplitude= |A| Period=2π
B

Vertical Shift= D Phase Shift=−C
B

y = 4 sin 2(x+π
3 )− 1.

The amplitude in this problem is 4 and the vertical shift is −1.

The period for this graph is 2π
B =2π

2 = π. Notice that the value of B is 2 in this
example, even though it’s been factored out from the rest of the argument.

The new starting point for the graph is actually easier to find in problems of this
type. If we take the argument as it is and set it equal to zero:

2(x+π
3 ) = 0

we can divide through on both sides by 2 to cancel out the factor of B:

2(x+π
3 )

2 =0
2

x+π
3= 0

x =−π
3

So, the new starting point for the function is−π
3 .

Now let’s find the rest of the critical values along the x-axis. The period for this
graph is π, so the “jump” between the critical values along the x-axis will be:

π∗14=π
4
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To find the rest of the critical values we’ll need to add π
4 to the starting point of

the graph (−π
3 ) four times:

−π
3+π

4=−4π
12+3π

12=− π
12

− π
12+3π

12=2π
12=π

6

2π
12+3π

12=5π
12

5π
12+3π

12=8π
12=2π

3

So the critical values along the x-axis would be:

−4π
12 ,−1π

12 , 2π
12 , 5π

12 , and 8π
12

or

−π
3 ,− π

12 , π6 , 5π
12 , and 2π

3

Now that we’ve addressed each of the four transformations let’s use this infor-
mation to draw the graph. First the y-axis - the amplitude is 4 and the vertical
shift is −1:

−5

3

−1
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Now, let’s fill in the information for the x-axis. The critical values along the x-axis
are−π

3 ,− π
12 , π6 , 5π

12 , and 2π
3

−π
3

− π
12

π
6

5π
12

2π
3

−5

3

−1

The function we’re graphing is a positive sine function, so it will start at the “mid-
line” or zero value (which in this case is−1), go up to the maximum, back through
the mid-line to the minimum and back to the mid-line:

−π
3

− π
12

π
6

5π
12

2π
3

−5

3

−1
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Exercises 9.5

Determine the Amplitude, Period, Vertical Shift and Phase Shift for each function
and graph at least one complete period. Be sure to identify the critical values
along the x and y axes.

1. y = sin(x+π
2 ) 2. y = sin(x− π)

3. y = 3 cos(x−π2 ) 4. y =1
2cos(x+ π)

5. y = 3 + cos(x−π4 ) 6. y = −2 + sin(x+π
6 )

7. y = sin(2x− π) 8. y = sin(4x+π
4 )

9. y = 2 cos(x2+π) 10. y = −3 sin(6x− π)

11. y =−1
3sin(2x+π

4 ) 12. y =1
2cos(x2−π)

13. y = 2 sin(2x−π3 )− 1 14. y = 1 + 2 cos(3x+π
2 )

15. y = 3 cos 2(x+π
6 ) 16. y = −4 sin 2(x+π

2 )

17. y = sin1
2(x+π

4 ) 18. y = 3 + 2 sin 3(x+π
2 )

In problems 19− 22, determine an equation for the function that is shown.

19.

−2π −π π 2π

−2

−1

1

2

20.

−2π −π π 2π

−2

−1

1

2
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21.

−2π −π π 2π

−3

−2

−1

1

22.

−2π −π π 2π

−2

−1

1

2

Match the function to the appropriate graph

23. y = − cos 2x 24. y =1
2sinx− 2

25. y = 2 cos(x+π
2 ) 26. y = −3 sin1

2x− 1

27. y = sin(x− π)− 2 28. y =−1
2cos(x−π4 )

29. y =1
3sin 3x 30. y = cos(x−π2 )

A.

−2π −π π 2π

−3

−2

−1

1

B.

−2π −π π 2π

−2

−1

1

2

C.

−2π −π π 2π

−2

−1

1

2

D.

−2π −π π 2π

−4

−3

−2

−1

1

2
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E.

−2π −π π 2π

−2

−1

1

2

F.

−2π −π π 2π

−2

−1

1

2

G.

−2π −π π 2π

−2

−1

1

2

H.

−2π −π π 2π

−2

−1

1

2

Determine the Amplitude, Period, Vertical Shift and Phase Shift for each function
and graph at least one complete period. Be sure to identify the critical values
along the x and y axes.

31. y = 2 cos(2x+π
2 )− 1 32. y = −4 cos(3x− 2π)

33. y = sin(2x−π4 ) 34. y = − sin(3x+ π)

35. y = 3 cos(x+π
3 ) + 1 36. y = −2 sin(3x−π2 )+4

37. y =−1
2sin(x−π2 )− 2 38. y = 2− cos(2x−π3 )
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Chapter 10

Trigonometric Identities and
Equations

Due to the nature of the trigonometric ratios, they have some interesting prop-
erties that make them useful in a number of mathematical problem-solving sit-
uations. One of the hallmarks of mathematical problem-solving is to change the
appearance of the problem without changing its value. Trigonometric identities
can be very helpful in changing the appearance of a problem.

The process of demonstrating the validity of a trigonometric identity involves
changing one trigonometric expression into another, using a series of clearly de-
fined steps. We’ll look at a few examples briefly, but first, let’s examine some of
the fundamental trigonometric identities.

10.1 Reciprocal and Pythagorean Identities

The two most basic types of trigonometric identities are the reciprocal identities
and the Pythagorean identities. The reciprocal identities are simply definitions of
the reciprocals of the three standard trigonometric ratios:

sec θ = 1
cos θ csc θ = 1

sin θ cot θ = 1
tan θ

437
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Also, recall the definitions of the three standard trigonometric ratios (sine, cosine
and tangent):

sin θ = opp
hyp

cos θ = adj
hyp

tan θ = opp
adj

If we look more closely at the relationships between the sine, cosine and tangent,
we’ll notice that sin θ

cos θ= tan θ.

sin θ
cos θ=

( opphyp )

( adjhyp )
=
opp
hyp∗

hyp
adj =

opp
adj= tan θ

Pythagorean Identities

The Pythagorean Identities are, of course, based on the Pythagorean Theorem. If
we recall a diagram that was introduced in Chapter 2, we can build these identi-
ties from the relationships in the diagram:

1

x

y

(x, y) = (cos θ, sin θ)

θ

Using the Pythagorean Theorem in this diagram, we see that x2 + y2 = 12, so
x2 + y2 = 1. But, also remember that, in the unit circle, x = cos θ and y = sin θ.



10.1. RECIPROCAL AND PYTHAGOREAN IDENTITIES 439

Substituting this equality gives us the first Pythagorean Identity:

x2 + y2 = 1
or

cos2 θ + sin2 θ = 1

This identity is usually stated in the form:

sin2 θ + cos2 θ = 1

If we take this identity and divide through on both sides by cos2 θ, this will result
in the first of two additional Pythagorean Identities:

sin2 θ
cos2 θ+ cos2 θ

cos2 θ= 1
cos2 θ

or

tan2 θ + 1 = sec2 θ

Dividing through by sin2 θ gives us the second:

sin2 θ
sin2 θ

+ cos2 θ
sin2 θ

= 1
sin2 θ

or

1 + cot2 θ = csc2 θ

So, the three Pythagorean Identities we will be using are:

sin2 θ + cos2 θ = 1

tan2 θ + 1 = sec2 θ

1 + cot2 θ = csc2 θ
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These Pythagorean Identities are often stated in other terms, such as:

sin2 θ = 1− cos2 θ

cos2 θ = 1− sin2 θ

tan2 θ = sec2 θ − 1

cot2 θ = csc2 θ − 1

At the beginning of this chapter, we discussed verifying trigonometric identities.
Now that we have some basic identities to work with, let’s use them to verify the
equality of some more complicated statements. The process of verifying trigono-
metric identities involves changing one side of the given expression into the other
side. Since these are not really equations, we will not treat them the way we treat
equations. That is to say, we won’t add or subtract anything to both sides of the
statement (or multiply or divide by anything on both sides either).

Another reason for not treating a trigonometric identity as an equation is that, in
practice, this process typically involves just one side of the statement. In prob-
lem solving, mathematicians typically use trigonometric identities to change the
appearance of a problem without changing its value. In this process, a trigono-
metric expression is changed into another trigonometric expression rather than
showing that two trigonometric expressions are the same, which is what we will
be doing.

Example 1

Verify the identity (sin θ)(cot θ) = cos θ

This is a very straightforward identity and it can solved by using one of the fun-
damental approaches to working with trigonometric identities. This is the ap-
proach of writing everything in terms of sines and cosines.
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Beginning with the original statement:

(sin θ)(cot θ) = cos θ

Replace cot θ with cos θ
sin θ :

(sin θ)cos θsin θ= cos θ

Then canceling out the sin θ:

cos θ = cos θ

There are four fundamental approaches to verifying trigonometric identities:

1. write everything in terms of sines and cosines

2. make a common denominator and add fractions

3. split a fraction

4. factor and cancel

Not all of these can be used in every problem and some problems will use com-
binations of these strategies. Here is another example.

Example 2

Verify the identity tan θ + cot θ = sec θ csc θ.

First we’ll write everything in terms of sines and cosines:

tan θ + cot θ = sec θ csc θ

sin θ
cos θ+cos θ

sin θ= 1
cos θ ·

1
sin θ
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Next, on the left hand side, we can add the two fractions together by making a
common denominator of cos θ sin θ.

sin θ

cos θ
+

cos θ

sin θ
=

1

cos θ
· 1

sin θ

sin θ

sin θ
· sin θ

cos θ
+

cos θ

sin θ
· cos θ

cos θ
=

1

cos θ
· 1

sin θ

sin2 θ

sin θ cos θ
+

cos2 θ

sin θ cos θ
=

1

cos θ
· 1

sin θ

sin2 θ + cos2 θ

sin θ cos θ
=

1

cos θ
· 1

sin θ

1

sin θ cos θ
=

1

sin θ cos θ

In this example, you can see that we have first written everything in terms of
sines and cosines, then created common denominators and added the fractions
on the left hand side together. After this is done, we can replace the expression
sin2 θ + cos2 θ with 1, since this is the fundamental Pythagorean Identity.

Example 3

Verify the identity tan θ−cot θ
sin θ cos θ = sec2 θ − csc2 θ

We’ll begin this problem by splitting the fraction over the denominator. This
can be helpful in problems in which there is no addition or subtraction in the
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denominator. The idea here is that since a
x+ b

x=a+b
x , then we can reverse this

process and say that a+bx =a
x+ b

x .

In the problem above we’ll say that:

tan θ − cot θ

sin θ cos θ
= sec2 θ − csc2 θ

tan θ

sin θ cos θ
− cot θ

sin θ cos θ
= sec2 θ − csc2 θ

sin θ
cos θ

sin θ cos θ
−

cos θ
sin θ

sin θ cos θ
= sec2 θ − csc2 θ

sin θ

cos θ
· 1

sin θ cos θ
− cos θ

sin θ
· 1

sin θ cos θ
= sec2 θ − csc2 θ

���sin θ

cos θ
· 1

���sin θ cos θ
−
���cos θ

sin θ
· 1

sin θ���cos θ
= sec2 θ − csc2 θ

1

cos2 θ
− 1

sin2 θ
= sec2 θ − csc2 θ

sec2 θ − csc2 θ = sec2 θ − csc2 θ

Example 4

Verify the identity tan2 θ−cos2 θ
1−cos2 θ = sec2 θ − cot2 θ.

On the left-hand side, notice the expression 1 − cos2 θ in the denominator. We
can replace this with sin2 θ, which is a simpler expression. It is often helpful to
have a simpler expression in the denominator rather than a more complicated
expression.
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tan2 θ − cos2 θ

1− cos2 θ
= sec2 θ − cot2 θ

tan2 θ − cos2 θ

sin2 θ
= sec2 θ − cot2 θ

Next, we can split the fraction over the denominator of sin2 θ:

tan2 θ − cos2 θ

sin2 θ
= sec2 θ − cot2 θ

tan2 θ

sin2 θ
− cos2 θ

sin2 θ
= sec2 θ − cot2 θ

We can see on the left-hand side that the expression cos2 θ
sin2 θ

is equivalent to cot2 θ,
but the first piece on the left-hand side needs to be simplified a little more. We’ll

rewrite tan2 θ as sin2 θ
cos2 θand then simplify the complex fraction.

tan2 θ

sin2 θ
− cos2 θ

sin2 θ
= sec2 θ − cot2 θ

sin2 θ
cos2 θ

sin2 θ
− cot2 θ = sec2 θ − cot2 θ

sin2 θ

cos2 θ
· 1

sin2 θ
− cot2 θ = sec2 θ − cot2 θ

���sin2 θ

cos2 θ
· 1
���sin2 θ

− cot2 θ = sec2 θ − cot2 θ
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After we cancel out the sin2 θ, we’re almost done:

���sin2 θ

cos2 θ
· 1
���sin2 θ

− cot2 θ = sec2 θ − cot2 θ

1

cos2 θ
− cot2 θ = sec2 θ − cot2 θ

sec2 θ − cot2 θ = sec2 θ − cot2 θ

The trigonometric identities we have discussed in this section are summarized
below:

Pythagorean Identities Reciprocal Identities

sin2 θ + cos2 θ = 1 tan θ = sin θ
cos θ

tan2 θ + 1 = sec2 θ cot θ =cos θ
sin θ

1 + cot2 θ = csc2 θ sec θ = 1
cos θ

csc θ = 1
sin θ

In the examples above and in the exercises, the form sin θ or cos θ is typically used,
however any letter may be used to represent the angle in question so long as it is
the SAME letter in all expressions. For example, we can say that:

sin2 θ + cos2 θ = 1

or we can say that
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sin2 x+ cos2 x = 1

however:

sin2 θ + cos2 x 6= 1

because θ and x could be different angles!
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Exercises 10.1

In each problem verify the given trigonometric identity.

1. cos θ(sec θ − cos θ) = sin2 θ 2. tan θ(cot θ + tan θ) = sec2 θ

3. tan θ(csc θ + cot θ) = sec θ + 1 4. cot θ(sec θ + tan θ) = csc θ + 1

5. tan2 θ csc2 θ − tan2 θ = 1 6. sin2 θ cot2 θ + sin2 θ = 1

7. sin θ tan θ+sin θ
tan θ+tan2 θ

= cos θ 8. cos θ cot θ+cos θ
cot θ+cot2 θ

= sin θ

9. (sin θ+cos θ)2

cos θ = sec θ + 2 sin θ 10. (sin θ + cos θ)2 + (sin θ − cos θ)2 = 2

11. cos θ(tan θ + cot θ) = csc θ 12. sin θ(cot θ + tan θ) = sec θ

13. cos θ
tan θ= csc θ − sin θ 14. sin θ

cot θ= sec θ − cos θ

15. csc θ
cos θ−

cos θ
csc θ=cot2 θ+sin2 θ

cot θ 16. sec θ+csc θ
tan θ+cot θ= sin θ + cos θ

17. sin θ
1+sin θ−

sin θ
1−sin θ= −2 tan2 θ 18. cos θ

1+cos θ−
cos θ

1−cos θ= −2 cot2 θ

19. cot θ
1+csc θ−

cot θ
1−csc θ= 2 sec θ 20. tan θ

1+sec θ−
tan θ

1−sec θ= 2 csc θ

21. sec2 θ
1+cot2 θ

= tan2 θ 22. csc2 θ
1+tan2 θ

= cot2 θ

23. sec4 θ − sec2 θ = tan4 θ + tan2 θ 24. csc4 θ − csc2 θ = cot4 θ + cot2 θ

25. 1− cos2 θ
1+sin θ= sin θ 26. 1− sin2 θ

1+cos θ= cos θ

27. sec θ
csc θ+ sin θ

cos θ= 2 tan θ 28. 1−sin θ
cos θ + cos θ

1−sin θ= 2 sec θ

29. cos θ
1+sin θ+1+sin θ

cos θ = 2 sec θ 30. tan θ−cot θ
tan θ+cot θ= sin2 θ − cos2 θ

31. sec θ−cos θ
sec θ+cos θ= sin2 θ

1+cos2 θ 32. sec θ+tan θ
cot θ+cos θ= tan θ sec θ
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10.2 Double-Angle Identities

In this section we will include several new identities to the collection we estab-
lished in the previous section. These new identities are called “Double-Angle
Identities” because they typically deal with relationships between trigonometric
functions of a particular angle and functions of “two times” or double the original
angle.

To establish the validity of these identities we need to use what are known as
the Sum and Difference Identities. These are identities that deal with expressions
such as sin(α + β). First we will establish an expression that is equivalent to
cos(α− β).

Let’s start with the unit circle:

(1, 0)

(cosβ, sinβ)

β

(cosα, sinα)

α

α− β

If we rotate everything in this picture clockwise so that the point labeled (cos β, sin β)
slides down to the point labeled (1, 0), then the angle of rotation in the diagram
will be α− β and the corresponding point on the edge of the circle will be:
(cos(α− β), sin(α− β)).

The diagram that represents this rotation is on the next page.
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(cos(α− β), sin(α− β))

(1, 0)α− β

Since the the second diagram is created by rotating the lines and points from the
first diagram, the distance between the points (cosα, sinα) and (cos β, sin β) in the
first diagram is the same as the distance between (cos(α− β), sin(α− β)) and the
point (1, 0) in the second diagram.

(1, 0)

(cosβ, sinβ)

β

d

(cosα, sinα)

α

α− β

(cos(α− β), sin(α− β))

(1, 0)

d

α− β

In the diagram above the length of d in each picture is the same.
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We can represent this distance d with the distance formula used to calculate the
distance between two points in the coordinate plane:

The distance between the points (x1, y1) and (x2, y2) is

d =
√

(x2 − x1)2 + (y2 − y1)2

So, in the first diagram the distance d will be:

d =
√

(cosα− cos β)2 + (sinα− sin β)2

In the second diagram the distance d will be:

d =
√

(cos(α− β)− 1)2 + (sin(α− β)− 0)2

Since these distances are the same, we can set them equal to each other:

√
(cosα− cos β)2 + (sinα− sin β)2 =

√
(cos(α− β)− 1)2 + (sin(α− β)− 0)2

We’ll square both sides to clear the radicals:

(cosα− cos β)2 + (sinα− sin β)2 = (cos(α− β)− 1)2 + (sin(α− β)− 0)2

Next, we’ll rewrite (sin(α− β)− 0)2 as sin2(α− β):

(cosα− cos β)2 + (sinα− sin β)2 = (cos(α− β)− 1)2 + sin2(α− β)
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Now we’ll work to simplify the expressions on the left-hand side of this equation.

(cosα− cos β)2 + (sinα− sin β)2 = (cos(α− β)− 1)2 + sin2(α− β)

First, each one needs to be squared:

(cosα− cos β)2 = cos2 α− 2 cosα cos β + cos2 β

(sinα− sin β)2 = sin2 α− 2 sinα sin β + sin2 β

So, the left-hand side will now be:

cos2 α− 2 cosα cos β + cos2 β + sin2 α− 2 sinα sin β + sin2 β

If we rearrange this a little, it will simplify nicely:

cos2 α− 2 cosα cos β + cos2 β + sin2 α− 2 sinα sin β + sin2 β

sin2 α + cos2 α + sin2 β + cos2 β − 2 cosα cos β − 2 sinα sin β

Notice the Pythagorean Identities at the front of this expression - these are each
equal to 1:

sin2 α + cos2 α + sin2 β + cos2 β − 2 cosα cos β − 2 sinα sin β

1 + 1− 2 cosα cos β − 2 sinα sin β

2− 2 cosα cos β − 2 sinα sin β

2(1− cosα cos β − sinα sin β)
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Now that we’ve simplified the left-hand side, we’ll simplify the right-hand side.
First we’ll square the expression (cos(α− β)− 1)2:

(cos(α− β)− 1)2 = cos2(α− β)− 2 cos(α− β) + 1

So, the right-hand side is now:

cos2(α− β)− 2 cos(α− β) + 1 + sin2(α− β)

If we rearrange this expression, we’ll again have a nice Pythagorean Identity:

sin2(α− β) + cos2(α− β)− 2 cos(α− β) + 1

1− 2 cos(α− β) + 1

2− 2 cos(α− β)

2(1− cos(α− β))

So the left-hand side was equal to:

2(1− cosα cos β − sinα sin β)

And the right-hand side was equal to:

2(1− cos(α− β))

So, our original statement in simplified form is:

2(1− cosα cos β − sinα sin β) = 2(1− cos(α− β))
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If we divide by 2 on both sides, we’ll have:

1− cosα cos β − sinα sin β = 1− cos(α− β)

then subtract 1

− cosα cos β − sinα sin β = − cos(α− β)

and multiply through by −1

cosα cos β + sinα sin β = cos(α− β)

So, cos(α− β) = cosα cos β + sinα sin β.

This will help us to generate the double-angle formulas, but to do this, we don’t
want cos(α− β), we want cos(α + β) (you’ll see why in a minute).

So, to change this around, we’ll use identities for negative angles. Recall that
in the fourth quadrant the sine function is negative and the cosine function is
positive. For this reason, sin(−θ) = − sin(θ) and cos(−θ) = cos(θ).

Now we can say that cos(2θ) = cos(θ + θ) = cos(θ − (−θ)). Going back to our
identity for cos(α− β), we can say that:

cos(θ − (−θ)) = cos θ cos(−θ) + sin θ sin(−θ)
cos(θ − (−θ)) = cos θ cos θ + sin θ(− sin θ)

cos(θ − (−θ)) = cos θ cos θ − sin θ sin θ

cos(θ − (−θ)) = cos2 θ − sin2 θ

cos(θ + θ) = cos2 θ − sin2 θ

cos(2θ) = cos2 θ − sin2 θ

This is the double-angle identity for the cosine: cos(2θ) = cos2 θ − sin2 θ.
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This identity actually appears in any one of three forms because the Pythagorean
Identities can be applied to this to change its appearance:

cos(2θ) = cos2 θ − sin2 θ

cos(2θ) = 1− sin2 θ − sin2 θ

cos(2θ) = 1− 2 sin2 θ

If we substitute for the sin2 θ term:

cos(2θ) = cos2 θ − sin2 θ

cos(2θ) = cos2 θ − (1− cos2 θ)

cos(2θ) = cos2 θ − 1 + cos2 θ

cos(2θ) = 2 cos2 θ − 1

So, the three forms of the cosine double angle identity are:

cos(2θ) = cos2 θ − sin2 θ

= 2 cos2 θ − 1

= 1− 2 sin2 θ

The double-angle identity for the sine function uses what is known as the co-
function identity. Remember that, in a right triangle, the sine of one angle is the
same as the cosine of its complement (which is the other acute angle). This is
because the adjacent side for one angle is the opposite side for the other angle.
The denominator in both cases is the hypotenuse, so the cofunctions of comple-
mentary angles are equal.
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In the diagram below, we can see this more clearly:

θ

a

b

c
90◦ − θ

In the diagram above note that:

sin θ =a
c= cos(90◦ − θ)

So, if we want an identity for sin(θ+ θ), we’ll start with sin(α+β) which is equiv-
alent to cos(90◦ − (α + β)). We’ll use a trick here and restate this as:

sin(α + β) = cos(90◦ − (α + β))

= cos(90◦ − α− β)

= cos((90◦ − α)− β)

= cos(90◦ − α) cos β + sin(90◦ − α) sin β

= sinα cos β + cosα sin β

Now, we can use this to find an expression for sin 2θ = sin(θ + θ):

sin 2θ = sin(θ + θ)

= sin θ cos θ + cos θ sin θ

= 2 sin θ cos θ
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Here is a summary of all the identities we’ve worked with in this chapter:

Pythagorean Identities Reciprocal Identities

sin2 θ + cos2 θ = 1 tan θ = sin θ
cos θ

tan2 θ + 1 = sec2 θ cot θ =cos θ
sin θ

1 + cot2 θ = csc2 θ sec θ = 1
cos θ

csc θ = 1
sin θ

Double-Angle Identities

cos(2θ) = cos2 θ − sin2 θ

cos(2θ) = 2 cos2 θ − 1

cos(2θ) = 1− 2 sin2 θ

sin(2θ) = 2 sin θ cos θ

Working problems involving double-angle identities is very similar to the other
identities we’ve worked with previously - you just have more identities to choose
from!

Example

Verify the given identity: cos 2x =1−tan2 x
1+tan2 x

We have three possible identities to choose from for the left-hand side, so we’ll
wait on that for a moment while we simplify the right-hand side.
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1− tan2 x

1 + tan2 x
=

1− tan2 x

sec2 x

=
1

sec2 x
− tan2 x

sec2 x

= cos2 x−
( sin2 x
cos2 x

)

( 1
cos2 x

)

= cos2 x− sin2 x

cos2 x
· cos2 x

1

= cos2 x− sin2 x

��
��cos2 x
·
���

�
cos2 x

1

= cos2 x− sin2 x

This is one of the identities for cos(2θ) so we can stop and simply state cos(2x) =
cos2 x− sin2 x
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Exercises 10.2

In each problem verify the given trigonometric identity.

1. 2 sinx cosx
cos2 x−sin2 x= tan(2x) 2. sec(2x) = sec2 x

2−sec2 x

3. sin(2x) cscx = 2 cos x 4. 2 cosx
sin(2x)= cscx

5. cos(2x)
sinx + sinx =cotx

secx 6. sinx+sin(2x)
secx+2 = sinx cosx

7. (sinx+ cosx)2 = 1 + sin(2x) 8. (sin2 x− 1)2 = sin4 x+ cos(2x)

9. 2 cosx−cos(2x)
cosx = secx 10. 1+cos(2x)

1−cos(2x)= cot2 x

11. cos(2x)

sin2 x
= cot2 x− 1 12. cos(2x)

sin2 x
= csc2 x− 2

13. cotx−tanx
cotx+tanx= cos 2x 14. sin 2x =

2(tanx−cotx)
tan2 x−cot2 x

15. 2 cos 2x
sin 2x = cotx− tanx 16. tan 2x = 2

cotx−tanx

17. sinx
1+cosx+1+cosx

sinx = 2 csc x 18. tanx+ cotx = 2 csc(2x)

19. cos(2x) =cot2 x−1
cot2 x+1

20. sin(2x) = 2 tanx
1+tan2 x

21. 2 sin2 x
sin(2x)+ cotx = secx cscx 22. sec2 x cos(2x) = sec2 x− 2 tan2 x

23. cos(2x)
sinx + sinx = cscx− sinx 24. 2 tanx−sin(2x)

2 sin2 x
= tanx
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10.3 Trigonometric Equations

In the previous section on trigonometric identities we worked with equations
that would be true for all values of a particular angle θ. These are sort of like
the algebraic equations whose solution set is “all real numbers,” like 2x + 10 =
2(x+ 1) + 8. In this section, we will solve trigonometric equations whose solution
set involves only certain values for the angle in question. Because of the cyclical
nature of the angles we’re working with, there will often be an infinite number of
solutions although not “all real numbers.”

Example 1

Here’s an example. Suppose that we consider the equation sinx = 0.5. Whether
we use technology, a table or reasoning to solve this equation, it’s clear that one
solution is 30◦. However, remember from the beginning of Chapter 2 that the
sine function is positive in Quadrant II. That means that a second quadrant angle
with a reference angle of 30◦also has a sine equal to 0.5. Recall the ASTC diagram
from Chapter 2:

AllSin

Tan Cos
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So, the sine function is positive in Quadrants I and II. This means that in addition
to a solution of 30◦, there is another solution in Quadrant II. As mentioned above,
this second quadrant solution has a reference angle of 30◦:

30◦
?

To find this angle, we simply subtract 180◦ − 30◦ = 150◦.

In Quadrant II, we subtract the reference angle from 180◦.

In Quadrant III, we add the reference angle to 180◦.

In Quadrant IV, we subtract the reference angle from 360◦.

So, the solutions to the equation sinx = 0.5 between 0◦and 360◦are x = 30◦, 150◦.
In this chapter we will consider mainly solutions with this restriction:

0◦ ≤ x < 360◦.

The infinite solutions to this equation can be expressed as:

30◦ + n · 360◦ and 150◦ + n · 360◦.
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Let’s look at another example:

Example 2

Find all solutions of the given equation for 0◦ ≤ x < 360◦.

tanx = 4

Using a calculator to find tan−1(4), we find that it returns an answer of x ≈ 75.96◦.
So this is the solution to the equation that lies in Quadrant I. The tangent function
is also positive in Quadrant III, so we should also consider the third quadrant
angle with a reference angle of 75.96◦:

75.96◦

?

In Quadrant III, we add the reference angle to 180◦:

180◦ + 75.96◦ = 255.96◦, so our solutions for this equation are x ≈ 75.96◦, 255.96◦.

Often, calculators are programmed to return an angle value that is not between
0◦ ≤ x < 360◦.
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Example 3

Find all solutions of the given equation for 0◦ ≤ x < 360◦.

sinx = −0.25

Solving this on a TI calculator would generally return a value of −14.5◦. How-
ever,−14.5◦ is clearly not between 0◦and 360◦, so we need to use this information
to find the solutions that are between 0◦and 360◦.

With the calculator returning a vlue of −14.5◦, we know that the reference angle
for all answers will be 14.5◦. Knowing this, we can say that the sine is negative
in Quadrants III and IV, so we’ll need angles in those quadrants with reference
angles of 14.5◦.

14.5◦ 14.5◦

In Quadrant III we’ll add 180◦to the reference angle: 180◦ + 14.5◦ = 194.5◦

In Quadrant IV we’ll subtract the reference angle from 360◦: 360◦−14.5◦ = 345.5◦.

So, x ≈ 194.5◦, 345.5◦.
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Some trigonometric equations have no real number solutions. The equation
sinx = 2 has no real number solutions. Recall that the sine ratio was originally
defined as the ratio of the side opposite an angle to the hypotenuse. The hy-
potenuse is always the longest side in a right triangle so there is no way the sine
function could be greater than 1 if we’re working with real-valued angles. How-
ever, in the same way that complex numbers are used to solve equations like
x2 = −7, complex-valued angles can be used to solve equations such as sinx = 2.
We won’t go into this here, however, there is a relatively straightforward way to
solve these equations.

If you encounter an equation like cosx = 3 and are solving for values of x
0◦ ≤ x < 360◦, then the proper response is “no solution” or “no real solution.”
However, remember that the tangent function can take any value between −∞
and∞.

Example 4

Solving an equation that includes a reciprocal trigonometric function simply in-
volves the extra step of finding the reciprocal:

Find all solutions of the given equation for 0◦ ≤ x < 360◦.

secx = 12

The trick here is to restate the equation so that we can use the preprogrammed
values from a calculator to find the solution.

If secx = 12 then cosx = 1
12 . Finding cos−1( 1

12)gives a solution of x ≈ 85.2◦.

The cosine and the secant are both positive in Quadrant IV, so we’ll also want a
fourth quadrant angle whose reference angle is 85.2◦:

85.2◦
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In Quadrant IV, we’ll subtract the reference angle from 360◦:

360◦ − 85.2◦ ≈ 274.8◦.

x ≈ 85.2◦, 274.8◦

Example 5

Solving a quadratic trigonometric equation often involves the use of the quadratic
formula:

Find all solutions of the given equation for 0◦ ≤ x < 360◦:

2 sin2 x− sinx− 2 = 0

Using the quadratic formula we arrive at approximate values for sinx of
sinx ≈ −0.7808, 1.2808.

The solution sinx ≈ 1.2808 yields no real solutions, so we will focus on solving
sinx ≈ −0.7808

Finding sin−1(−0.7808) gives us an answer of ≈ −51.3◦. This means our answers
will lie in Quadrants III and IV with reference angles of 51.3◦. In Quadrant III,
we’ll say 180◦ + 51.3◦ ≈ 231.3◦. In Quadrant IV, we’ll subtract the reference angle
from 360◦: 360◦ − 51.3◦ ≈ 308.7◦.

So, x ≈ 231.3◦, 308.7◦.
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Exercises 10.3

Find all solutions for 0◦ ≤ x < 360◦.
Round all angle measures to the nearest 10th of a degree.

1. cosx− 0.75 = 0 2. sinx+ 0.432 = 0

3. 3 sinx− 5 = 0 4. sinx− 4 = 0

5. 3 secx+ 8 = 0 6. 4 cscx+ 9 = 0

7. 3− 5 sinx = 4 sin x+ 1 8. 4 cosx− 5 = cos x− 3

9. 3 tan2 x+ 2 tanx = 0 10. 4 cos2 x− cosx = 0

11. 3 cos2 x+ 5 cosx− 2 = 0 12. 2 cot2 x− 7 cotx+ 3 = 0

13. 2 tan2 x− tanx− 10 = 0 14. 2 sin2 x+ 5 sinx+ 3 = 0

15. 2 cos2 x− 5 cosx− 5 = 0 16. 3 sin2 x− sinx− 1 = 0
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10.4 More Trigonometric Equations

When the solution to a trigonometric equation is one of the quadrantal angles
(0◦, 90◦, 180◦, 270◦and so on), then determining all the solutions between 0◦and
360◦can work a little differently. The calculator will return some of these values,
but in some cases it may not. If we go back to the unit circle, we can see this more
clearly:

(cos 0◦, sin 0◦)

(1, 0)

(cos 90◦, sin 90◦)
(0, 1)

(cos 180◦, sin 180◦)

(−1, 0)

(cos 270◦, sin 270◦)
(0,−1)

In the diagram above we can see the sine and cosine for 0◦, 90◦, 180◦, and 270◦.
Since tan θ = sin θ

cos θ , then we can see that tan 0◦ = 0, tan 90◦ is undefined, tan 180◦ =
0 and tan 270◦ is also undefined.

The real issue with the quadrantal angles is finding sin−1(0), cos−1(0) or tan−1(0).
The calculator returns values of:

sin−1(0) = 0◦

cos−1(0) = 90◦

tan−1(0) = 0◦

In each case, there is another possibility than differs from the given angle by 180◦,
so:
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sin−1(0) = 0◦, 180◦

cos−1(0) = 90◦, 270◦

tan−1(0) = 0◦, 180◦

Let’s look at how this is used in solving an equation:

Example 1

Solve the given equation for 0◦ ≤ x < 360◦.

tan2 x− tanx = 0

We could use the quadratic formula to solve this, but we can also solve by factor-
ing:

tan2 x− tanx = 0

tanx(tanx− 1) = 0

tanx = 0 or tanx = 1

Using a calculator to find tan−1(0) and tan−1(1) returns values of tan−1(0) = 0◦

and tan−1(1) = 45◦. Once we know the reference angle for tan−1(1), then we
know that since the tangent is also positive in Quadrant III, the solutions here are
45◦and 225◦. The calculator returns an answer of 0◦for tan−1(0), but we just saw
that tan 180◦ = 0 as well.

The answers for this equation are x = 45◦, 225◦, 0◦, 180◦.
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Another approach to solving trigonometric equations involves using Pythagorean
Identities to make a substitution that so that the equation can be simply solved
by the quadratic formula. Here’s an example:

Example 2

Solve the given equation for 0◦ ≤ x < 360◦.

sin2 θ − 6 cos θ = 4

Notice that, unlike the problems we saw in the previous section, this equation
involves both the sine and the cosine. To remedy this, we can replace the sin2 θ
term with the expression 1− cos2 θ.

sin2 θ − 6 cos θ = 4

1− cos2 θ − 6 cos θ = 4

0 = cos2 θ + 6 cos θ + 3

using the quadratic formula:

cos θ ≈ −5.449,−0.5505

Since cos−1(−5.449) is not a real-valued angle, we can focus on the other answer:
cos−1(−0.5505) ≈ 123.4◦. Since the cosine function is also negative in the third
quadrant, we need to find the reference angle that will help us identify the third
quadrant angle that is a solution for this equation:

180◦ − 123.4◦ = 56.6◦

So the reference angle is 56.6◦.

180◦ + 56.6◦ = 236.6◦

The solutions are θ ≈ 123.4◦, 236.6◦.
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Example 3

Solve the given equation for 0◦ ≤ x < 360◦.

2 cos2 θ − sin θ = sin2 θ + 1

First, we’ll substitute 1− sin2 θ for the cos2 θ:

2 cos2 θ − sin θ = sin2 θ + 1

2(1− sin2 θ)− sin θ = sin2 θ + 1

2− 2 sin2 θ − sin θ = sin2 θ + 1

0 = 3 sin2 θ + sin θ − 1

Solving this with the quadratic formula gives us solutions of sin θ ≈ −0.7676, 0.43426.

sin−1(−0.7676) ≈ −50.1◦

sin−1(0.43426) ≈ 25.7◦

We’ll work with the positive solution first. Since the sine is also positive in Quad-
rant II, the other angle will be 180◦ − 25.7◦ = 154.3◦.

For the negative solution, we know that the sine is negative in Quadrants III and
IV, so with a reference angle of 50.1◦, in the third quadrant 180◦ + 50.1◦ = 230.1◦

and in the fourth quadrant 360◦ − 50.1◦ = 309.9◦.

The solution set is θ ≈ 25.7◦, 154.3◦, 230.1◦, 309.9◦.
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Exercises 10.4

Solve the given equations for 0◦ ≤ x < 360◦.

1. 9 sin2 θ − 6 sin θ = 1 2. 4 cos2 θ + 4 cos θ = 1

3. sec2 α− 2 secα− 3 = 0 4. csc2 β + 4 csc β − 10 = 0

5. csc2 x+ 4 cscx− 7 = 0 6. 3 cot2 x− 3 cotx− 1 = 0

7. 2 sin2 x = 1− cosx 8. cos2 α + 4 = 2 sinα− 3

9. cos2 β − 3 sin β + 2 sin2 β = 0 10. sin2 θ = 2 cos θ + 3 cos2 θ

11. sec2 x = 2 tan x+ 4 12. 3 tan2 x = secx+ 2

13. cosα + 1 = 2 cos 2α 14. cos 2x− 3 sinx− 2 = 0

15. csc2 θ = cot θ + 5 16. csc θ + 5 = 2 cot2 θ + 2



Chapter 11

The Law of Sines
The Law of Cosines

In Chapter 1, we used the fundamental trigonometric relationships in right tri-
angles to find unknown distances and angles. Unfortunately, in many problem-
solving situations, it is inconvenient to use right triangle relationships. Therefore,
from the right triangle relationships, we can derive relationships that can be used
in any triangle.

11.1 The Law of Sines

The Law of Sines is based on right triangle relationships that can be created with
the height of a triangle. Often, in this type of a problem, the angles are labeled
with capital letters and their corresponding sides are labeled with lower case
letters.

A B

C

a

c

b

471
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If we drop a perpendicular to the base of the triangle from the vertex point at ∠C,
this creates two right triangles with which we can make use of the right triangle
trigonometry covered in Chapter 1. This perpendicular would be the height of
the triangle.

h

A B

C

a

c

b

The Law of Sines is derived from this configuration and allows us to calculate the
value of sides and angles in a triangle without a right angle, based on information
about known sides and angles. Given the right triangles in the diagram above,
we can see that:

sinB =h
a

and

sinA =h
b

Clearing the denominator in each fraction, we can see that:

a sinB = h

and

b sinA = h

so

a sinB = b sinA
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To put this in the form in which the Law of Sines is normally stated, we can divide
on both sides of the previous expression by ab:

a sinB = b sinA

a sinB
ab =b sinA

ab

sinB
b = sinA

a

A similar process will show that sinC
c is equivalent to sinB

b and sinA
a . The diagram

we derived this from used an acute triangle in which all the angles were less than
90◦. The process to show that this is true for an obtuse triangle (which has one
angle larger than 90◦) is relatively simple and is left to the reader to discover or
look up in another resource.

The Law of Sines

sinA
a = sinB

b = sinC
c

Sometimes it is handy to set up a problem with the side lengths in the numerator:

The Law of Sines

a
sinA= b

sinB= c
sinC

Example 1

Solve the triangle. Round side lengths to the nearest 100th.

A

ba

45◦

95◦

5
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In this problem we’re given two angles and one side. It’s important that the side
we’re given corresponds to one of the known angles, otherwise we wouldn’t be
able to use the Law of Sines.

A

ba

45◦

95◦

5

Since we know two of the angles, then the third will just be 180◦ − (45◦ + 95◦) =
180◦ − 140◦ = 40◦ = ∠A. To find the lengths of the unknown sides, we’ll use the
Law of Sines. We should start by choosing a side-angle pair for which we know
both the side and the angle. In this case, we know that ∠C = 95◦ and side c = 5.

c
sinC= b

sinB

5
sin 95◦=

b
sin 45◦

If we multiply on both sides by sin 45◦, then

sin 45◦∗ 5
sin 95◦= b

To arrive at an approximate value for sin 45◦∗ 5
sin 95◦ , we can say:

0.7071∗ 5
0.9962≈ b

3.55 ≈ b

To find the length of side a, I would recommend that we use the exact side-angle
pair that was given in the problem, rather than using the approximate value of
side b that we just solved for.
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This will make our value for side a more accurate:

c
sinC= a

sinA

5
sin 95◦=

a
sin 40◦

Multiplying on both sides by sin 40◦, then

sin 40◦∗ 5
sin 95◦= a

To arrive at an approximate value for sin 40◦∗ 5
sin 95◦ , we can say:

0.6428∗ 5
0.9962≈ a

3.23 ≈ a

∠A = 40◦ a ≈ 3.23

∠B = 45◦ b ≈ 3.55

∠C = 95◦ c = 5

Example 2

Some problems don’t come with diagrams:

Solve the triangle if: ∠A = 40◦, ∠B = 20◦, a = 2.
Round side lengths to the nearest 100th.

Just as in the previous example, we can begin by finding the measure of the third
angle ∠C. This would be 180◦ − (40◦ + 20◦) = 180◦ − 60◦ = 120◦ = ∠C

To find the missing sides, we should use the complete side-angle pair that is given
in the problem: ∠A = 40◦ and a = 2.
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We can find side b first or side c first, it doesn’t matter which:

a
sinA= b

sinB

2
sin 40◦=

b
sin 20◦

sin 20◦∗ 2
sin 40◦= b

Then,

0.3420∗ 2
0.6428≈ b

1.06 ≈ b

For side c:

a
sinA= c

sinC

2
sin 40◦=

c
sin 120◦

sin 120◦∗ 2
sin 40◦= c

Then,

0.8660∗ 2
0.6428≈ c

2.69 ≈ c

∠A = 40◦ a = 2

∠B = 20◦ b ≈ 1.06

∠C = 120◦ c ≈ 2.69
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Exercises 11.1

In each problem below, solve the triangle. Round side lengths to the nearest 100th.

1. A

10a

30◦

125◦

c 2.

100◦

C
6

a

32◦

c

3.
25◦

A

98◦ 1000

c 4.

C

a

52◦ 70◦

26.7

5.
28◦

C
185

b
102◦

c 6.
40◦

A

17
37.5◦

c

7. ∠A = 50◦, ∠C = 27◦, a = 3 8. ∠B = 70◦, ∠C = 10◦, b = 5

9. ∠A = 110◦, ∠C = 30◦, c = 3 10. ∠A = 50◦, ∠B = 68◦, a = 230

11. ∠A = 23◦, ∠B = 110◦, c = 50 12. ∠A = 22◦, ∠B = 95◦, a = 420

13. ∠B = 10◦, ∠C = 100◦, c = 11 14. ∠A = 30◦, ∠C = 65◦, b = 10

15. ∠A = 82◦, ∠B = 65.4◦, b = 36.5 16. ∠B = 28◦, ∠C = 78◦, c = 44

17. ∠A = 42◦, ∠B = 61◦, a = 12 18. ∠A = 42.5◦, ∠B = 71.4◦, a = 215
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11.2 The Law of Sines: the ambiguous case

In all of the examples and problems in Section 4.1, notice that we were always
given two angles and one side, although we could use the Law of Sines if we
were given one angle and two sides (as long as one of the sides corresponded to
the given angle). This is because when we use the Law of Sines to find an angle,
an ambiguity can arise due to the sine function being positive in Quadrant I and
Quadrant II.

We saw in Chapter 3 that multiple answers arise when we use the inverse trigono-
metric functions. For problems in which we use the Law of Sines given one angle
and two sides, there may be one possible triangle, two possible triangles or no
possible triangles. There are six different scenarios related to the ambiguous case
of the Law of Sines: three result in one triangle, one results in two triangles and
two result in no triangle.

One Triangle

A

a
h

b

a > b

A

ahb

a = h

A

a
b

a > b
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Two Triangles

A

a a
b

h

h < a < b

No Triangle

A

a

hb

a < h

A

a

b

a ≤ b

We’ll look at three examples: one for one triangle, one for two triangles and one
for no triangles.
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Example 1

Solve the triangle if: ∠A = 112◦, a = 45, b = 24

Round the angles and side lengths to the nearest 10th.

Using the Law of Sines, we can say that:

sin 112◦

45 = sinB
24

0.9272
45 ≈

sinB
24

24∗0.927245 ≈ sinB

0.4945 ≈ sinB

Then, we find sin−1(0.4945) ≈ 29.6◦. Remember from Chapter 3 that there is a
Quadrant II angle that has sin θ ≈ 0.4945, with a reference angle of 29.6◦. So, ∠B
could also be ≈ 150.4◦. However, with ∠A = 112◦, there is no way that another
angle of 150.4◦would fit inside the same triangle. For this reason, we know then
that ∠B must be 29.6◦.

29.6◦ ≈ B

So now

∠A = 112◦

∠B ≈ 29.6◦

and ∠C = 180◦ − (112◦ + 29.6◦) = 180◦ − 141.6◦ ≈ 38.4◦

∠C ≈ 38.4◦

We already know that a = 45 and b = 24. To find side c, I would recommend
using the most exact values possible in the Law of Sines calculation. This will
provide the most accurate result in finding the length of side c.
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45
sin 112◦=

c
sin 38.4◦

45
0.9272≈

c
0.6211

0.6211∗ 45
0.9272≈ c

30.1 ≈ c

∠A = 112◦ a = 45

∠B ≈ 29.6◦ b = 24

∠C ≈ 38.4◦ c ≈ 30.1

Example 2

Solve the triangle if: ∠A = 38◦, a = 40, b = 52

Round the angles and side lengths to the nearest 10th.

Using the Law of Sines, we can say that:

sin 38◦

40 = sinB
52

0.6157
40 ≈

sinB
52

52∗0.615740 ≈ sinB

0.8004 ≈ sinB

Just as in the previous example, we can find sin−1(0.8004) ≈ 53.2◦. But again,
there is a Quadrant II angle whose sine has the same value ≈ 0.8004. The angle
126.8◦has a sine ≈ 0.8004 and a reference angle of 53.2◦. With ∠A = 38◦, both of
these angles (53.2◦and 126.8◦) could potentially fit in the triangle with angle A.
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If we go back to the diagrams we looked at earlier in this section, we can see how
this would happen:

38◦ 53.2◦126.8◦

40 40
52

38◦

C

c
126.8◦

40
52 C

c
38◦ 53.2◦

40
52

In the first possibility ∠C would be ≈ 15.2◦.

In the second possibility ∠C would be ≈ 88.8◦.

38◦

15.2◦

c
126.8◦

40
52 88.8◦

c
38◦ 53.2◦

40
52

To find the two possible lengths for side c, we’ll need to solve two Law of Sines
calculations, one with ∠C ≈ 15.2◦ and one with the ∠C ≈ 88.8◦.

40
sin 38◦=

c
sin 15.2◦

40
0.6157≈

c
0.2622

0.2622∗ 40
0.6157≈ c

17.0 ≈ c
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With ∠C ≈ 88.8◦:

40
sin 38◦=

c
sin 88.8◦

40
0.6157≈

c
0.9998

0.9998∗ 40
0.6157≈ c

65.0 ≈ c

So, our two possible solutions would be:

∠A = 38◦ a = 40

∠B ≈ 126.8◦ b = 52

∠C ≈ 15.2◦ c ≈ 17.0

OR

∠A = 38◦ a = 40

∠B ≈ 53.2◦ b = 52

∠C ≈ 88.8◦ c ≈ 65.0

Example 3

Solve the triangle if: ∠B = 73◦, b = 51, a = 92

Round the angles and side lengths to the nearest 10th.

Using the Law of Sines, we can say that:

sin 73◦

51 = sinA
92
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0.9563
51 ≈

sinA
92

92∗0.956351 ≈ sinA

1.7251 ≈ sinA

As we saw previously, no real-valued angle has a sine greater than 1. Therefore,
no triangle is possible.
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Exercises 11.2

In each problem, solve the triangle.
Round side lengths to the nearest 100th and angle measures to the nearest 10th.

1. ∠A = 50◦, b = 20, a = 32 2. ∠B = 40◦, b = 4, c = 3

3. ∠A = 43◦, a = 23, b = 29 4. ∠C = 20◦, c = 43, a = 55

5. ∠B = 62◦, b = 4, a = 5 6. ∠A = 75◦, b = 8, a = 3

7. ∠B = 24◦, a = 17, b = 8 8. ∠A = 40◦, a = 4, c = 5

9. ∠A = 108◦, a = 12, b = 7 10. ∠B = 117◦, b = 19.6, c = 10.5

11. ∠A = 42◦, a = 18, c = 11 12. ∠C = 27◦, a = 42, c = 37

13. ∠C = 125◦, c = 2.7, b = 5.2 14. ∠B = 115◦, b = 68, a = 92

15. ∠A = 43◦, a = 31, b = 37 16. ∠A = 28◦, b = 3.5, a = 4.3

17. ∠C = 132◦, c = 22, b = 16 18. ∠B = 114.2◦, b = 87.2, a = 12.1

19. ∠B = 52◦, c = 82.7, b = 70 20. ∠C = 65◦, b = 7.6, c = 7.1
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11.3 The Law of Cosines

There are situations in which the Law of Sines cannot be used to solve a triangle.
In the diagram below, we have information about two sides and the included
angle:

26◦

10

18

The problem above lacks a complete angle-side pair which is necessary to set up
the Law of Sines calculation.

Another common situation involves a triangle in which all three sides are known
but no angles are known:

30

14
25

Again, the lack of an angle-side pair would prevent us from setting up a Law of
Sines calculation.

The Law of Cosines is one way to get around this difficulty. Using the Law of
Cosines is more complicated than using the Law of Sines, however, as we have
just seen, the Law of Sines will not always be enough to solve a triangle.

To derive The Law of Cosines, we begin with an arbitrary triangle, like the one
seen on the next page:
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y

a
c

bC A

B

In this diagram we have taken the arbitrary triangle and created a perpendicular
with length y. From this, we can say that sinC =

y
aand that a sinC = y.

We can split side AC into two pieces AD and CD, as seen below, and label the
distance CD as x.

y

a
c

x DC A

B

Then, we can say that cosC =x
aand that a cosC = x.

If we then put this triangle onto the coordinate axes with ∠C at the origin (0, 0),
we can derive the Law of Cosines. The coordinate of the vertex at ∠B will be
(a cosC, a sinC), and the coordinates of the vertex at ∠A will be (b, 0).
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y
a c

x DC A
(b, 0)

B

(a cosC, a sinC)

Using the distance formula, we can say that:

c =
√

(a cosC − b)2 + (a sinC − 0)2

Squaring both sides:

c2 = (a cosC − b)2 + (a sinC − 0)2

and

c2 = a2 cos2C − 2ab cosC + b2 + a2 sin2C

or

c2 = a2 sin2C + a2 cos2C + b2 − 2ab cosC
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Factoring out the a2 and replacing sin2C + cos2C with 1, we come out with one
of the most common forms of the Law of Cosines:

c2 = a2 sin2C + a2 cos2C + b2 − 2ab cosC

c2 = a2(sin2C + cos2C) + b2 − 2ab cosC

c2 = a2(1) + b2 − 2ab cosC

c2 = a2 + b2 − 2ab cosC

Any letter may be used to represent each of the sides, but the order that the letters
are used in is very important. The side of the triangle isolated on the left hand
side must correspond to the angle used on the right hand side.

The Law of Cosines

a2 = b2 + c2 − 2bc cosA

b2 = a2 + c2 − 2ac cosB

c2 = a2 + b2 − 2ab cosC

We’ll look at three examples - two in which two sides and the included angle are
given and one in which the three sides of the triangle are given.
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Example 1

Solve the triangle: ∠A = 38◦, c = 17, b = 8
Round angle measures and side lengths to the nearest 10th.

38◦

A

C

B

a

c = 17

b = 8

It’s usually a good idea to see if you can use the Law of Sines first, since it is easier
to calculate. In this case we can’t because we don’t have a complete angle-side
pair. So, using the Law of Cosines to find side a:

a2 = b2 + c2 − 2bc cosA

a2 = 82 + 172 − 2 ∗ 8 ∗ 17 ∗ cos 38◦

a2 ≈ 64 + 289− 272 ∗ 0.7880

a2 ≈ 353− 214.336

a2 ≈ 138.664

a ≈ 11.8

Once we know that a ≈ 11.8 we can use this to find the other angles using the
Law of Sines. Because of the issue of the ambiguous case in using the Law of
Sines, it’s often a good idea to find the angles that correspond to the two shortest
sides in the triangle, because if there is an obtuse angle in the triangle it will have
to correspond to the longest side. If we find the two smaller angles, we can be
assured that they will both be acute and we can subtract from 180◦to find the
largest angle.
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sin 38◦

11.8 = sinB
8

8∗0.6156611.8 = sinB

0.4174 ≈ sinB

24.7◦ ≈ B

So with ∠A = 38◦ and ∠B ≈ 24.7◦, then:

∠C ≈ 180◦ − (38◦ + 24.7◦) ≈ 180◦ − 62.7◦ ≈ 117.3◦

So, the angles and sides of the triangle would be:

∠A = 38◦ a ≈ 11.8

∠B ≈ 24.7◦ b = 8

∠C ≈ 117.3◦ c = 17

In example 2, we’ll look at a problem in which an obtuse angle is given.

Example 2

Solve the triangle: ∠A = 110◦, c = 30, b = 35
Round angle measures and side lengths to the nearest 10th.

110◦

b = 35

c = 30

A C

B

a
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The calculation for this problem is slightly different from the last one because the
cosine of 110◦will be negative:

a2 = b2 + c2 − 2bc cosA

a2 = 352 + 302 − 2 ∗ 35 ∗ 30 ∗ cos 110◦

a2 ≈ 1225 + 900− 2100 ∗ (−0.3420)

a2 ≈ 2125 + 718.2

a2 ≈ 2843.2

a ≈ 53.3

In this problem, since we were given an obtuse angle, then the other two angles
must be acute and we don’t have to worry about the ambiguous case in using the
Law of Sines.

sin 110◦

53.3 = sinB
35

sin 110◦

53.3 = sinC
30

35∗0.939753.3 = sinB 30∗0.939753.3 = sinC

0.61706 ≈ sinB 0.5289 ≈ sinC

38.1◦ ≈ B 31.9◦ ≈ C

So the angles and sides of the triangle would be:

∠A = 110◦ a ≈ 53.3

∠B ≈ 38.1◦ b = 35

∠C ≈ 31.9◦ c = 30
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In example 3, we’ll look at a problem in which three side lengths are given and
we find an angle using the Law of Cosines.

Example 3

Solve the triangle: a = 20, c = 9, b = 15
Round angle measures to the nearest 10th.

a = 20

b = 15

C

A

B

c = 9

It doesn’t matter which angle we choose to solve, but whichever angle we choose
must correspond to the side isolated on the left-hand side of the formula. If we
want to solve for ∠B, we would say:

b2 = a2 + c2 − 2ac cosB

152 = 202 + 92 − 2 ∗ 20 ∗ 9 ∗ cosB

225 = 400 + 81− 360 ∗ cosB

225 = 481− 360 cosB

−256 = −360 cosB

−256
−360=−360 cosB−360

0.71 = cosB
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0.71 = cosB

44.7◦ ≈ B

Once we know the measure of ∠B, we’ll use this to find the measure of ∠C, which
corresponds to side c, the smallest side. Then we’ll subtract to find the biggest
angle.

sin 44.7◦

15 = sinC
9

9∗0.703415 = sinC

0.42204 ≈ sinC

25.0◦ ≈ C

So, with ∠B ≈ 44.7◦ and ∠C ≈ 25.0◦, then:

∠A ≈ 180◦ − (44.7◦ + 25.0◦) ≈ 180◦ − 69.7◦ ≈ 110.3◦

So the angles and sides of the triangle would be:

∠A = 110.3◦ a ≈ 53.3

∠B ≈ 44.7◦ b = 35

∠C ≈ 25.0◦ c = 30

If we had used the Law of Sines to find ∠A, the calculator would have returned
the value of the reference angle for ∠A, rather than the angle that is actually in
the triangle described in the problem!
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Exercises 11.3

In each problem, solve the triangle.
Round side lengths to the nearest 100th and angle measures to the nearest 10th.

1. A

24

30

30◦
BC

2.

A

B

C14

20

40◦

3. A B

C

60 122

154 4. A B

C
68

38

42

5. ∠A = 52◦, c = 27, b = 36 6. ∠B = 75◦, a = 32, c = 59

7. ∠B = 135◦, a = 12, c = 18 8. ∠C = 120◦, b = 22, a = 30

9. a = 21, b = 26, c = 23 10. a = 11, b = 13, c = 17

11. a = 25, b = 32, c = 40 12. a = 60, b = 88, c = 120

13. ∠A = 77.4◦, b = 444, c = 390 14. ∠B = 10◦, a = 18, c = 30

15. a = 112.7, b = 96.5, c = 130.2 16. a = 4.7, b = 3.2, c = 5.9
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11.4 Applications

In the previous sections on applications, we saw situations in which right triangle
trigonometry was used to find distances and angles. In this section, we will use
the Law of Sines and the Law of Cosines to find distances and angles.

Example 1

A car travels along a straight road, heading west for 1 hour, then traveling on
another straight road northwest for a half hour. If the speed of the car was a
constant 50 mph how far is the car from its starting point?

First, let’s draw a diagram:

A
B

C

45◦ 135◦

In the picture above, we know the angles 45◦ and 135◦ because of the direction the
car was traveling. The direction northwest cuts exactly halfway between north
and west creating a 45◦ angle. On the other side of this 45◦ angle is a 135◦ angle
which is in the triangle we’ll use to answer the question (triangle ABC).

The length of AB is 50 miles and the length of BC is 25 miles. This comes from
the information about the speed and traveling time given in the problem. So the
triangle we need to answer the question is pictured below:

A
B

C

c = 50

a = 25 135◦
b =?
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A
B

C

c = 50

a = 25 135◦
b =?

We can use the Law of Cosines to solve this problem:

b2 = a2 + c2 − 2ac cosB

b2 = 252 + 502 − 2 ∗ 25 ∗ 50 ∗ cos 135◦

b2 ≈ 625 + 2500− 2500 ∗ (−0.7071)

b2 ≈ 3125 + 1767.75

b2 ≈ 4892.75

b ≈ 69.9 miles
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Example 2

A pilot flies an airplane in a straight path for 2.5 hours and then makes a course
correction, heading 10◦to the left of the original course. The pilot then flies in this
direction for 1 hour. If the speed of the plane is a constant 350 mph, how far is
the plane from its starting position?

Again, we’ll start by making a diagram:

B

A

C
10◦

170◦

In this problem, we’ll be working with triangle ABC, shown below. We can cal-
culate the lengths of AB and BC from the information given in the problem and
use this to calculate the length of AC:

∠B = 170◦

A

C

a = 350

b

c = 875
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∠B = 170◦

A

C

a = 350

b

c = 875

Using the Law of Cosines:

b2 = a2 + c2 − 2ac cosB

b2 = 3502 + 8752 − 2 ∗ 350 ∗ 1050 ∗ cos 170◦

b2 ≈ 122, 500 + 765, 625− 735, 000 ∗ (−0.9848)

b2 ≈ 888, 125 + 723, 828

b2 ≈ 1, 611, 953

b ≈ 1270 miles
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Example 3

A pilot leaves the airport in Bend, headed towards Corvallis with the bearing
N70◦W . He travels the 103 miles and makes a delivery before taking off and
flying at a bearing of N25◦E for 72 miles to arrive in Portland.

B

C

P

70◦

25◦

a) Based on this information, find the air distance between Portland and Bend.

b) Find the bearing from Portland to Bend.

In this problem, a diagram has been given. We’ll amend this to make it into a
triangle:

B

C

P



11.4. APPLICATIONS 501

Filling the measures of the angles is tricky in this problem, so let’s look at the
original diagram again:

B

C

P

70◦

25◦

If we extend the dashed line east from Corvallis so that it meets the dashed line
running north from Bend, we can create a triangle that shows us that the angle
∠BCX = 20◦. Also, notice that ∠PCX = (90◦ − 25◦) = 65◦.

B

C

P

X

70◦

20◦

25◦

65◦

This means that ∠BCP = 85◦. We know from the problem that BC = 103 and
CP = 72. We’ll need to find the length of BP and the measure of ∠CPB to
answer the questions.
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B

C

P

85◦

p = 103

b = 72

c =?

Now we’re working with a triangle like the one pictured above, so we can use
the Law of Cosines to find the air distance from Portland to Bend:

c2 = b2 + p2 − 2bp cosC

c2 = 722 + 1032 − 2 ∗ 72 ∗ 103 ∗ cos 85◦

c2 ≈ 5184 + 10, 609− 14, 832 ∗ (0.087156)

c2 ≈ 15, 793− 1292.7

c2 ≈ 14, 500.3

c ≈ 120.4 miles

To find ∠P , we’ll use the Law of Sines:

sin 85◦

120.4 = sinP
103

103∗ sin 85
◦

120.4 = sinP

103∗0.9962120.4 ≈ sinP

0.85223 ≈ sinP

58.4◦ ≈ P
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Now that we know the measure of ∠P , we can determine the bearing of Bend
from Portland.

B

C

P

58.4◦25◦

In the picture below notice that ∠Y PC = 25◦. This means that the bearing from
Portland to Bend will be east of south by the difference between ∠P = 58.4◦ and
∠Y PC = 25◦. This makes the bearing of Bend from Portland equal to S33.4◦E.

B

C

P

Y

25◦
25◦

33.4◦
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Example 4

A 125 foot tower is located on the side of a mountain that is inclined 32◦to the
horizontal. A guy wire is to be attached to the top of the tower and anchored at
a point 55 feet downhill from the base of the tower. Find the shortest length of
wire needed.

55 ft

32◦

125 ft

An important aspect in solving this problem is to identify a triangle in the prob-
lem which involves the unknown quantity we’re being asked to find. If we’re
looking for the length of the guy wire, we can use a triangle that involves the
wire, the distance from the wire to the center of the tower and the height of the
tower:

55 ft

125 ft

32◦

The angle between the horizontal and the hill will stay 32◦at any point on the
hill. If we drop a perpendicular to the horizontal, we’ll be able to find the angle
included between the two given sides.
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In the little right triangle, we know the 32◦angle. That means the other acute
angle must be 58◦, and the supplementary angle (which is in the triangle we’re
interested in) will be 122◦.

55 ft

125 ft

32◦

58◦
122◦

Now we can use the Law of Cosines to find the length of the guy wire:

x2 = 1252 + 552 − 2 ∗ 125 ∗ 55 ∗ cos 122◦

x2 = 15, 625 + 3025− 13, 750 ∗ cos 122◦

x2 ≈ 18, 650 + 7286.39

x2 ≈ 25, 936.39

x ≈ 161 feet
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Exercises 11.4

1. Two straight roads diverge at an angle of 50◦. Two cars leave the intersec-
tion at 1 pm, one traveling 60 mph and the other traveling 45 mph. How far apart
are the cars (as the crow flies) at 1:30 pm?

2. Two boats leave the same port at the same time. One travels at a speed of
40 mph in the direction N30◦E and the other travels at a speed of 28 mph in the
direction S75◦E. How far apart are the two boats after one hour?

N30◦E

30◦

S75◦E
75◦

E

N

S

W

3. The airport in Desert Junction is 350 miles from the airport in Valley Center
at a bearing of N57◦E. A pilot who wants to fly from Valley Center to Desert
Junction mistakenly flies due east at 225 mph for 30 minutes before correcting
the error. How far is the plane from its destination when the pilot notices the
error? What bearing should the plane use in order to arrive at Desert Junction?

Valley Center

Desert Junction

57◦

350 mi
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4. An airplane leaves airport A and travels 520 miles to airport B at a bearing
of N35◦W . The plane leaves airport B and travels to airport C 310 miles away at
a bearing of S65◦W from airport B. Find the distance from airport A to airport C.

5. Two planes take off at the same time from an airport. The first plane flies at
300 mph at a bearing of S45◦E. The second plane is flying at a bearing of S5◦W
with a speed of 330 mph. How far apart are they after 3 hours?

6. Two planes leave an airport at the same time. Their speeds are 180 mph
and 110 mph, and the angle between their flight paths is 43◦. How far apart are
they after 2.5 hours?

7. Two ships leave a harbor entrance at the same time. The first travels at
a speed of 23 mph and the second travels at 17 mph. If the angle between the
courses of the ships is 110◦, how far apart are they after one hour?

8. A ship leaves the entrance to a harbor and travels 15 miles with a bear-
ing S10◦W , then turns and travels 45 miles with a bearing of N43◦W . How far
from the harbor entrance is the ship and what is the bearing of the ship from the
harbor?

9. A steep mountain is inclined 77◦to the horizontal and rises 3000 feet above
the surrounding plain. A cable car is to be installed that will connect the plain
to the top of the mountain. The distance from the foot of the mountain to the
cable car entry loading area is 1200 feet (see diagram below). Find the shortest
necessary length of the cable.

77◦

cable car loading area
1200 feet

3000 ft
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10. A tree on a hillside casts a shadow 208 ft down the hill. If the angle of
inclination of the hillside is 25◦to the horizontal and the angle of elevation of the
sun is 51◦, find the height of the tree.

208 ft

51◦
25◦



Answer Key

Section 1.1

1) −x2 − 16x− 13 3) 3b2 5) 6m− 3

7) −2a2 + 19a− 58 9) 2y2 + 24y − 22

Section 1.2

1) 8a2b2(b+ 3) 3) 13t2(t6 + 2t2 − 3)

5) 9mn3(5m3n2 + 4n3 + 9m) 7) (a+ 2)(a+ 1)

9) (x− 9)(x+ 3) 11) (m+ 9)(m− 6)

13) (a+ 3)(a− 3) 15) (k + 7)(k − 7)

17) 6(x+ 3)(x− 3) 19) 2(10 + a)(10− a)

21) 2(7 + 2k)(7− 2k) 23) 5(y + 4)(y − 4)

25) 2(2y + 7)(2y − 7) 27) k(6 + 7k)(6− 7k)

509
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Section 1.2(cont.)

29) PRIME 31) (3x− 4)(3x− 2)

33) (2x+ 3)(x+ 2) 35) 2(5y + 3)(2y + 1)

37) 3(2a− 3)(4a− 1) 39) (10− y)(3 + y)

41) (12 + x)(2− x) 43) (14 + x)(6− x)

45) 3(2y2 + 8y + 5) 47) 4a(5x+ 1)(x− 2)

Section 1.3

1) x ≈ 0.275,−7.275 3) x ≈ 1.587,−0.420

5) x ≈ 0.787,−1.905 7) x ≈ −0.548, 2.002

9) x ≈ −0.164,−1.172 11) x ≈ −0.575,−2.175

13) x = 10, 5
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Section 1.4

−10−9 −8 −7 −6 −5 −4 −3 −2 −1 1 2 3 4 5 6 7 8 9 10

−10i
−9i
−8i
−7i
−6i
−5i
−4i
−3i
−2i
−1i

1i

2i

3i

4i

5i

6i

7i

8i

9i

10i

R

Im

#1

#3

#5

#7

#9

#11

13) 6i 15) 10i 17) 2i 19) 1.414i

21) 3.162i 23) 2.236i
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Section 1.4(cont.)

25) 11 + 10i 27) 8 + 10i 29) 2− i 31) −42

33) 10 35) 1 + 5i 37) −3− 28i 39) 11 + 2i

41) 12− 16i 43) 10 45) 97

47) −i 49) i 51) i 53) 1

55) −1 57) 1 59) −i 61) −1

Section 1.5

1) x ≈ 1.758,−0.758 3) x ≈ 0.344,−1.744 5) x ≈ 0.16± 0.373i

7) x ≈ −0.5± 1.204i 9) x ≈ 0.286± 0.881i 11) x ≈ 4± 4.243i

Section 1.6

1)
3

x− 3
3) −x

3
5)

4x

2x− 1

7) − y + 5

2(y + 1)
9)

x+ 5

x− 1
11) −(x+ 7)

13)
3

5x(x− 2)
15)

2a+ 3

a+ 1
17)

1

x− y
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Section 1.6 (cont.)

19)
4x

(x− 2)(x− 3)
21) 3x

23)
(x+ 1)(x+ 2)

(x− 1)(x− 2)
25)

(x− 4)(x+ 3)

(x− 1)(2x+ 1)

Section 1.7

1)
1

x(x− 1)
3)

6x− 6

x2 − 9
5)

−k2 + 5k + 23

(k + 2)(k + 5)

7)
−y2 − 3y

y2 − 25
9)

x2 − 2x+ 1

(x+ 1)(x− 3)
11)

b− 1

2b+ 2

13)
1

a+ 1
15)

−1

2x− 4
17)

x

x− 2

19)
a

a− 3
21)

5x+ 3

x+ 1
23)

5

x− 1

Section 1.8

1)
2

2x+ y
3)

m2

n(m− n)
5)

x

y

7) x+ 1 9)
x+ 2

x− 2
11)

−5

x2 − x− 5



514 CHAPTER 11. THE LAW OF SINES THE LAW OF COSINES

Section 1.8 (cont.)

13) −2b− a
3b− a

15)
(n+ 3)(n− 2)

n− 1
17)

−x
1− x

OR

x

x− 1

Section 1.9

1) x = −1,−5 3) y ≈ 3.449,−1.449 5) y = 4

7) x = 6,−4 9) n = 12,−2 11) x = −0.2, 3

13) x ≈ −2.256,−5.911 15) x = 0, 16 17) x ≈ 0.884,−1.884

19) y ≈ 5.919,−2.253 21) a = 0, 2
3

23) x = −0.625

25) y = 3
7

27) x ≈ 13.659,−0.659 29) x = 1

Section 2.1

1) −7 < x ≤ −4 OR 0 ≤ x ≤ 5 3) x ≤ −1 OR x ≥ 2

5) −8 ≤ x < −6 OR x ≥ 3 7) x ≤ −10 OR −4 < x < 1 OR x > 6

9) −12 ≤ x < −7 OR x > 5 11) x = 0 OR x > 4

13) x < −5 OR −3 < x < −1 OR x ≥ 4
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Section 2.2

1) x ≈ −0.4142, 2.4142, 1
3

3) x ≈ −4.035, 2.378, 2.657

5) x ≈ 2.176, 2.902,−0.902,−0.176 7) x ≈ −1.984, 0.707, 1.286, 4.991

9) x ≈ 6.161,−0.537 11) x ≈ −0.889, 1, 0.645, 1.745

Section 2.3

1) y ≥ 0: −0.618 ≤ x ≤ 1.618 OR x ≥ 3

y < 0: x < −0.618 OR 1.618 < x < 3

3) y ≥ 0: −1.5 ≤ x ≤ −0.236 OR x ≥ 4.236

y < 0: x < −1.5 OR −0.236 < x < 4.236

5) y ≥ 0: x ≤ 1.5 OR x ≥ 5
3

y < 0: 1.5 < x < 5
3

7) y ≥ 0: x ≤ −2.656 OR −0.486 ≤ x ≤ 0.460 OR x ≥ 1.682

y < 0: −2.656 < x < −0.486 OR 0.460 < x < 1.682

9) x ≤ −3 OR x = 1 11) x > 3 OR −4 < x < 1

13) All real numbers 15) x ≤ −2.264 OR 0.756 ≤ x ≤ 3.508

17) x < 0.5 OR x > 0.839
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Section 2.4

1) −4 < x < 2 OR x > 6

3) −5 < x < −2 OR 2 < x < 7

5) −2
3
< x < 1.791 OR x < −2.791

7) −2.080 < x < −1.618 OR x > 0.618

9) −11
3
< x < −2.162 OR x > 4.162

11) −2 < x < 1.791 OR x < −2.791 OR x > 3

13) −4.372 < x < −3.828 OR 1.372 < x < 1.828

15) −5.193 < x < −2.646 OR 0.193 < x < 2.646

Section 2.5

1) x2 + 3x− 4 = 0 3) 2x2 − 5x+ 3 = 0

5) 3x2 − 10x+ 3 = 0 7) 4x2 − 12x− 7 = 0

9) 3x2 + 11x+ 6 = 0 11) 2x2 − x+ 15 = 0

Section 2.6

1) y2 − 2y + 2 3) x− 5 5) x3 − x+ 3

7) (2z2 − 2z + 7) R : 1 9) x2 + x+ 1

11) (2y3 − 3y2 − 2y + 2) R : 3y + 2

13) (5x2 + 15x+ 17) R : −24x− 83
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Section 2.7

1) x2 − 3x− 10 3) x2 + 5x− 1 5) x3 − 4x2 + x+ 6

7) x3 − 1 R : 8 9) x3 + 1 11) x3 − 3x2 + 4x− 2

13) x2 + 4x+ 5

Section 2.8

1) (x+ 1)(x− 2)(x2 − 2x+ 5) 3) (x+ 1)(x− 2)(2x2 − 3x+ 2)

x = −1, 2, 1± 2i x = −1, 2, 0.75± 0.661i

5) (x− 5)(x+ 2)(x2 − 6x+ 13) 7) (x− 1)3(x2 − 6x+ 10)

x = 5,−2, 3± 2i x = 1, 3± i

9) (x− 1)3(x− 3) 11) (x− 1)3(x2 + 9)

x = 1, 3 x = 1,±3i

13) (5x+ 1)(3x2 − 2x+ 3) 15) (3x+ 2)(2x2 + 3x+ 2)

x = −1
5
, 1
3
± 0.943i x = −2

3
,−0.75± 0.661i

17) (x+ 3)(2x− 1)(2x2 + 5x+ 5) 19) (2x+ 1)(x− 3)(x2 + x+ 1)

x = −3, 1
2
,−1.25± 0.968i x = 3,−1

2
,−0.5± 0.866i

21) (2x+ 1)(3x− 2)(2x2 + x+ 1) x = 2
3
,−1

2
,−0.25± 0.661i
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Section 3.1

1) a) ≈ 107mg 3) a) 450 bass
b) ≈ 99 minutes b) ≈ 744 bass

5) a) ≈ 141◦F 7) a) 13 kg.
b) ≈ 28.3 minutes b) ≈ 6.62 kg.

c) ≈ 63.7 days

9) a) 6,000 10,570 11) a) 33,333 21,494
b) 1.6 years 12,000 b) ≈ 1.98 years

approaches 20,000

13) a) 16.5 lbs 15) a) 6.8 gal.
b) 45.8 minutes 43.94 minutes

Section 3.2

1) 5t = 9 3) 52 = 25 5) 10−1 = 0.1

7) 100.845 ≈ 7 9) 25.13 ≈ 35 11) e−1.3863 ≈ 0.25

13) log 100 = 2 15) log4
1

1024
= −5 17) log16 8 = 3

4

19) log 20 ≈ 1.3 21) ln 20.0855 ≈ 3 23) ln 0.0183 ≈ −4
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Section 3.3

1) ≈ 2.322 3) ≈ 1.771 5) ≈ 1.585 7) ≈ 1.227

9) ≈ −0.089 11) ≈ 0.183 13) ≈ −2.297 15) ≈ −19.655

17) ≈ 0.723 19) ≈ −0.795 21) ≈ 2.117 23) ≈ 0.042

25) ≈ −1.165 27) ≈ 0.134

Section 3.4

1) x = 1.8 3) x = 12 5) x = 9,−1

7) x = 6 9) x = 2,−4 11) x = 16
7

13) x ≈ 1.606,−5.606 15) x = 1.2 17) x = 24

19) x = 8
3

21) x = 3, 8 23) x = 1

25) x ≈ 11.944,−5.944

Section 3.5

1) a) ≈ 1.576g b) ≈ 69.67 years 3) 50mg

5) a) 210◦F b) ≈ 152.9◦F c) ≈ 28.4 minutes

7) 7:30AM 9) a) T = 20 + 80e−0.025t b) ≈ 62.85◦C
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Section 4.1

1) f(0) = 1 f(−1) = 6 f(3) = 10 f(0.5) = 0

f(x+ 2) = 2x2 + 5x+ 3 f(x+ h) = 2x2 + 4xh− 3x+ 2h2 − 3h+ 1

3) f(0) = 0 f(−1) = undefined f(3) = 0.375 f(0.5) = −2
3

f(x+ 2) =
x+ 2

x2 + 4x+ 3
f(x+ h) =

x+ h

x2 + 2xh+ h2 − 1

Section 4.2

1) Domain: x ≥ −1
2

3) Domain: x ∈ R, x 6= −9

Range: y ≥ 0 Range: y ∈ R, y 6= 1

5) Domain: −10 ≤ x ≤ 4 7) Domain: −8 ≤ x ≤ 6

Range: −5 ≤ y ≤ 2 Range: −2 < y ≤ 6



11.4. APPLICATIONS 521

Section 4.3

1) Domain: −6 ≤ x ≤ 2 3) Domain: −3 ≤ x ≤ 2

Range: −19 ≤ y ≤ 17 Range: −7 ≤ y ≤ 20

Maximum Value: f(2) = 17 Maximum Value: f(−2) = 20

Minimum Value: f(−4) = −19 Minimum Value: f(1) = −7

Increasing: −4 < x ≤ 2 Increasing: −3 ≤ x < −2, 1 < x ≤ 2

Decreasing: −6 ≤ x < −4 Decreasing: −2 < x < 1

Section 4.4

1) a) #2 b) #3 c) #4 d) #1

3) a) 11 b) 2 c) 10 d) 12 e) 1 f) 3

g) 5 h) 4 i) 8 j) 7 k) 9 l) 6

5) a) b)

−8 −4 4 8 12 16

−8

−6

−4

−2

2

4

6

8

(−8,−5)

(5, 3)

(18,−5)

−8 −4 4 8 12 16

−8

−6

−4

−2

2

4

6

8

(−8, 1)

(5,−7)

(18, 1)
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Section 4.4 (cont.)

5) c) d)

−12 −8 −4 4 8 12 16

−8

−4

4

8

12

16

(−10,−4)

(3, 12)

(16,−4)

−8 −4 4 8 12 16

−8

−6

−4

−2

2

4

6

8

(−4,−3)

(2.5, 5)

(9,−3)

7) a) b)

−2 −1 1 2 3 4

−10

−5

5

10

15

20
(0, 20)

(−1, 9) (4, 4)

(3,−7)

−4 −3 −2 −1 1 2 3

−20

−15

−10

−5

5

10

15

(1, 8)

(−3,−8)

(−2,−19)

(2,−3)
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Section 4.4 (cont.)

7) c) d)

−2 −1 1 2 3 4

−15
−10
−5

5
10
15
20
25
30
35
40

(−1, 40)

(−2, 18) (3, 8)

(2,−14)

−4 −3 −2 −1 1 2 3

−15

−10

−5

5

10

15

(−2, 7)

(−3, 1.5) (2,−1)

(1,−6.5)

Section 4.5

1) 3)

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8
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Section 4.5(cont.)

5) 7)

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

9) C 10) G 11) A 12) B 13) K 14) H

15) D 16) J 17) I 18) E 19) L 20) F

Section 4.6

1) 3)

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8
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Section 4.6(cont.)

5) 7)

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

9) 11)

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8

13)

−8 −6 −4 −2 2 4 6 8

−8

−6

−4

−2

2

4

6

8
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Section 4.6(cont.)

15) f(x) =

{
−x −1 ≤ x ≤ 0
1
2

0 < x ≤ 2
17) f(x) =

{
−x x ≤ 0

−x+ 2 0 < x ≤ 2

Section 4.7

1) f ◦ g(x) = (x− 1)2 3) f ◦ g(x) =
x+ 3

−x+ 3

g ◦ f(x) = x2 − 1 g ◦ f(x) =
4x− 6

x

5) f ◦ g(x) =
√
x4 = x2

g ◦ f(x) = (x+ 1)2 − 1 = x2 + 2x

7) f(x) = x2 9) f(x) =
√
x 11) f(x) = x2

g(x) = 3x+ 1 g(x) = 1− 4x g(x) =
x+ 1

x− 1

13) f(x) = x−3 15) f(x) =
√
x 17) f(x) = x1.5

g(x) = 3x2 − 1 g(x) =
x

x− 1
g(x) = x2 − x− 1

19) f(x) =
2√
x

21) V (f(t)) = 4
3
π
(
1
2
t+ 2

)3
g(x) = 4− x2 t = 2
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Section 4.8

1) f−1(x) =
x

3
3) f−1(x) =

x− 2

4
5) f−1(x) = 3

√
x+ 1

7) f−1(x) =
√
x− 4 9) f−1(x) =

4

x
11) f−1(x) =

1

x
+ 2

13) f−1(x) =
2

x
− 3 15) f−1(x) =

−2x

x− 3
17) f−1(x) =

x

3x− 2

19) f−1(x) =
3x+ 4

2x− 3
21) f−1(x) =

−2x+ 3

x− 2

23) T (v) = 40

(
1−

√
V

1000

)
25) L(t) =

245t2

π2

Section 4.9

Analytic Optimization

1) Closest point: x ≈ 1.628 3) Closest point: x ≈ −4.264

y ≈ 1.350 y ≈ 4.654

d ≈ 5.620 d ≈ 2.290

5) Closest point: x ≈ 0.810 7) a) A(x) = x(16− x2)

y ≈ 0.527 b) x ≈ 2.309

d ≈ 1.281 c) A ≈ 24.634



528 CHAPTER 11. THE LAW OF SINES THE LAW OF COSINES

Section 4.9(cont.)

Geometry/Cost Optimization

1) C(w) = 20w2 +
180

w
3) V (x) = 300x− x3

4

` ≈ 3.302, w ≈ 1.651, h ≈ 1.834 ` = w = 20

Minimum cost ≈ $163.54 Maximum volume = 4000cm3

5) A(w) =
60− 2w − πw

4
∗ w +

πw2

8
7) V (x) = 100r − πr3

w ≈ 8.041, ` ≈ 4.201, A ≈ 63.011ft2 r ≈ 3.257, h ≈ 6.516, V ≈ 217in3

Distance Optimization

1) d(t) =
√

89t2 3) d(t) =
√

(9− 15t)2 + (2 + 12t)2

d = 150m t ≈ 0.3hrs.→ 1 : 18 pm

t ≈ 15.9 sec d ≈ 7.2 miles

Distance/Time/Cost Optimization

1) t(x) =
√
x2 + 2500 + 20− x

5
3) C(x) = 25

√
x2 + 3600 + 20(200− x)

x ≈ 10.206 x = 80→ 120m on land, 100m in the water

t ≈ 69 sec C(80) = $4900
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Section 5.1

1) Center:(3,−1) 3) Center:(1, 6)

Radius = 3 Radius =
√

20

−10−8−6−4−2 2 4 6 8 10

−8

−6

−4

−2

2

4

6

8

−10−8−6−4−2 2 4 6 8 10

−8
−6
−4
−2

2
4
6
8

10

5) Center:(−7, 4) 7) (x− 4)2 + (y + 1)2 = 25

Radius =
√

33 9) (x− 5)2 + (y − 1)2 = 9

−14−12−10−8−6−4−2 2 4 6 8 10

−8
−6
−4
−2

2
4
6
8

10
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Section 5.1(cont.)

1) Center:(0, 0) 3) Center:(3, 0)

Radius = 2 Radius = 2

5) (x− 1)2 + (y − 2)2 = 9 7) (x+ 2)2 + (y − 2)2 = 9

Center:(1, 2) Center:(−2, 2)

Radius = 3 Radius = 3

9) (x+ 2)2 + y2 = 0.5 11) (x− 3)2 + (y + 2)2 = 25

Center:(−2, 0) Center:(3,−2)

Radius =
√

0.5 Radius = 5

13) (x+ 7.5)2 + y2 = 56.25 15) (x− 0.5)2 + (y + 1)2 = 0.25

Center:(−7.5, 0) Center:(0.5,−1)

Radius =
√

56.25 = 7.5 Radius = 0.5

17) (x− 2.5)2 + (y − 4.5)2 = 27 19) (x+ 0.5)2 + (y − 1.5)2 = 43
18

Center:(2.5, 4.5) Center:(−0.5, 1.5)

Radius =
√

27 Radius =

√
43

18
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Section 5.2

Part I

1) −4(y − 6) = (x− 2)2 3) 6x = y2

5) −14(x− 8.5) = (y − 1)2 7) −10(y + 0.5) = (x− 1)2

9) 2(y − 3) = (x− 1)2 11) 5(y + 1.25) = x2

13) 3(x− 1.25) = (y − 7)2 15) 25
4

(x− 3) = (y + 2)2

Part II

1) V : (2,−1) 3) V : (2,−1) 5) V : (−3,−2)

F : (2, 1) F : (3.5,−1) F : (−3,−3.25)

D : y = −3 D : x = 0.5 D : y = −0.75

7) V : (−4,−8) 9) (x+ 4)2 = −(y − 10) 11) (y + 3)2 = −8(x− 1)

F : (−5.5,−8) V : (−4, 10) V : (1,−3)

D : x = −2.5 F : (−4, 9.75) F : (−1,−3)

D : y = 10.25 D : x = 3
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Section 5.2(cont.)

13) (x+ 2)2 = 3(y − 1) 15) (y + 3)2 = 4(x+ 1.25)

V : (−2, 1) V : (−1.25,−3)

F : (−2, 1.75) F : (−0.25,−3)

D : y = 0.25 D : x = −2.25

17) (y − 1.5)2 = −(x− 1.25) 19) (y − 1.5)2 = −(x+ 1.75)

V : (1.25, 1.5) V : (−1.75, 1.5)

F : (1, 1.5) F : (−2, 1.5)

D : x = 1.5 D : x = −1.5

21) (x+ 1.5)2 = −3(y − 13
12

) 23) (x− 4)2 = 4(y + 13
4

)

V : (−1.5, 13
12

) V : (4,−13
4

)

F : (−1.5, 1
3
) F : (4,−9

4
)

D : y = 11
6

D : y = −17
4

25) (y + 1)2 = −0.5(x− 4.5) 27) (x− 1)2 = 3(y − 1
9
)

V : (4.5,−1) V : (1, 1
9
)

F : (4.375,−1) F : (1, 31
36

)

D : x = 4.625 D : y = −23
36

29) y − 3 = (x− 4)2 31) 3(x− 5) = (y + 2)2

33) −5(x− 3) = (y − 6)2 35) −4(y − 6) = (x+ 7)2



11.4. APPLICATIONS 533

Section 5.3

1) 25
12
ft 3) 0.25in 5) 1.8 inches

7) 8.4375ft 9) ≈ 12.65ft 11) 6662
3
in

13) 25.4ft 15) 0.25in 17) Yes. 10.5ft

Section 6.1

1) a1 = 4, a2 = 7, a3 = 10, a4 = 13, a10 = 31

3) a1 = −2, a2 = −7, a3 = −12, a4 = −17, a10 = −47

5) a1 = 2, a2 = 8, a3 = 18, a4 = 32, a10 = 200

7) a1 = −4, a2 = 8, a3 = −12, a4 = 16, a10 = 40

9) a1 = 2, a2 = 4
3
, a3 = 8

9
, a4 = 16

27
, a10 = 1024

19,683

11) a1 = 1
7
, a2 = −1

9
, a3 = 1

11
, a4 = − 1

13
, a10 = − 1

25

13) a1 = −3, a2 = 1, a3 = 5, a4 = 9, a10 = 33

15) a1 = 7, a2 = 2, a3 = 7, a4 = 2, a10 = 2

17) a1 = 1, a2 = 3, a3 = 6, a4 = 10, a10 = 55

19) a1 = 1
2
, a2 = 2, a3 = −1

2
, a4 = −2, a10 = 2



534 CHAPTER 11. THE LAW OF SINES THE LAW OF COSINES

Section 6.1(cont.)

21) General Term: an = n+ 5 23) General Term: an = 3n− 2

Recursive: a1 = 6, an = an−1 + 1 Recursive: a1 = 1, an = an−1 + 3

25) General Term: an = −2 ∗ (−3)n−1 27) General Term: an = −2n+ 3

Recursive: a1 = −2, an = −3 ∗ an−1 Recursive: a1 = 1, an = an−1 − 2

29) General Term: an =
5

2n
31) General Term: an =

(
− 1

3

)n
Recursive: a1 = 5

2
, an = 1

2
an−1 Recursive: a1 = −1

3
, an = −1

3
∗ an−1

33) General Term: an = (−1)(−5)n or 5n(−1)n+1

Recursive: a1 = 5, an = −5an−1

35) General Term: an = n(−1)n+1

Recursive: a1 = 1, an = an−1
(
n(n− 1)

)(−1)n+1

Section 6.2

1) Arithmetic, d = 4 3) Geometric, r = 1.5 5) Neither

7) Arithmetic, d = 20 9) Neither 11) Geometric, r = 0.25

13) Neither 15) Geometric, r = 2
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Section 6.3

1) −3− 1 + 1 + 3 + 5 + 7 + 9 + 11 + 13 + 15

3) 1
2
− 1

3
+ 1

4
− 1

5
+ 1

6
− 1

7
+ 1

8
− 1

9

5) 0 + 1
2

+ 2 + 9
2

+ 8

For problems #7-13, answers may vary.

7)
5∑
i=0

4(i+ 2) 9)
9∑
i=0

7i+ 2 11)
16∑
i=1

i2 13)
5∑
i=0

(
− 1

2

)i

Section 6.4

1)
16383

4096
≈ 3.999756 3) 1093 5) 341 7) 254

9) 248 11) 15 13) 4 15) 1
20

= 0.05

17) does not converge 19) − 1
36

= 0.027

Section 7.1

1) 48 = 65, 536

3) a) 2 ∗ 83 ∗ 106 = 1, 024, 000, 000

b) 64 ∗ 108 = 6, 400, 000, 000

c) 8 ∗ 106 = 8, 000, 000
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5) 123 = 1728

7) No. Only 2600 possibilities.

9) a) 55 = 3125

b) 5 ∗ 44 = 1280

c) 54 = 625

d) 54 = 625

e) 12, EABCD, DABCE, EACBD, DACBE, EBACD, DBACE,

EBCAD, DBCAE, ECABD, DCABE, ECBAD, DCBAE

Section 7.2

1) 480 3) 720 5) 720 7) 99

9) 24 11) 72 13) 117,600 15)
10!

(10− r)!

17) ab, ba, ac, ca, bc, cb

19) 24 abcd, abdc, acbd, acdb, adbc, adcb

bacd, badc, bcad, bcda, bdac, bdca

cabd, cadb, cbda, cbad, cdab, cdba

dabc, dacb, dbac, dbca, dcab, dcba

21) 50P4 = 5, 527, 200

23) a) 9! = 362, 880 b) 5! ∗ 4! = 2880
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25) 9P4 = 3024 27) 8! ∗ 3! = 241, 920

Section 7.3

1) 210 3) 210 5) 455 7)
n!

4!(n− 4)!
9) 12C3 = 220

11) 52C5 = 2, 598, 960

13) Assuming ace is a high card: 28C5 = 98, 280

Assuming ace is a low card: 32C5 = 201, 376

15) a) 15C4 = 1365 b) 15P4 = 32, 760

17) a) 25C8 = 1, 081, 575

b) 15C8 = 6435

c) 10C8 = 45

d) 10C5 ∗15 C3 = 114, 660

19) a) 20 ∗ 17 = 340 b) 20P17 c) 37 ∗36 C18 ∗ 18!

Section 7.4

1) a) 266 − 256 b) 5 ∗24 P4

2) a) 16C5 −9 C5 b) 16C5 −9 C5 −7 C5

3) 15C3 ∗10 C3
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4) a) 5 ∗ 6 ∗ 215 b) 6C2 ∗ 52 ∗ 214 c) 266 − 216

d) 266 − 216 − 30 ∗ 215

5) 45C3 ∗57 C4 ∗69 C5 6) 15C4 ∗10 C2 +15 C5 ∗10 C1 +15 C6

7) 26 ∗ 25 ∗ 24 ∗ 10 ∗ 9 ∗ 8 8) 6 9) 20 10) 30C12 ∗18 C2

11) a) 15,504 b) 792 c) 6160

12) 104,781,600 13) 167,650,560 14) 6600 15) 161,280

16) 564,480 17) a) 20,160 b) 8640 18) 109

19) 26 + 260 = 286 20) a) 51 b) 47

21) a) 263 ∗ 103 b) 263 ∗10 P3 c) 26P3 ∗ 103 d) 26P3 ∗10 P3

22) 26P5 23) a) 54 = 625 b) 120 c) 4∗4P3 = 96 d) 369

24) a) 10P3 = 720 b) 9 ∗ 8 = 72 c) 9 ∗ 9 ∗ 8 = 648

d) 9 ∗ 8 ∗ 8 = 576 e) 9 ∗ 8 ∗ 2 = 144 f) 720− 7 ∗ 6 ∗ 5 = 510

25) a) 16 b) 8 c) 2 ∗ 26 + 2 ∗ 25 = 102 d) 28

26) a) 12 b) 144 c) 3 ∗ 4 ∗ 3 ∗ 2 = 72
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27) a) 28 b) 24 c) 26 − 24 = 48 d) 26 + 26 − 24 = 112

28) a) 2 ∗ 11! b) 12!− 11! ∗ 2

29) 26 + 26 ∗ 36 + 26 ∗ 362 + 26 ∗ 363 + 26 ∗ 364 + 26 ∗ 365 = 1, 617, 038, 306

30) a) 4! ∗ 5! ∗ 6! b) 3! ∗ 4! ∗ 5! ∗ 6!

Section 7.5

1)
6!

3!2!1!
2)

9!

3!3!3!
3)

5!

2!

4)
8!

3!2!
5)

6!

4!2!
= 15 6)

14!

5!2!7!
= 72, 072

7)
12!

4!3!2!3!
= 277, 200 8)

12!

3!2!
= 39, 916, 800 9)

14!

3!2!4!5!
= 2, 522, 520

10)
7!

3!2!
= 420 11)

8!

5!2!
= 168

Section 7.6

1) a) { HH, HT, TH, TT } b) 1
4

c) 3
4

d) 1
2

2) a) { H1, H2, H3, H4, H5, H6, T1, T2, T3, T4, T5, T6 }

b) 1
4

c) 1
6

d) 1
4
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3) a) 1
6

b) 1
2

c) 1
6

4) a) 1
3

b) 1
2

c) 1
3

5) a) 4
52

= 1
13

b) 12
52

= 3
13

c) 40
52

= 10
13

6) a) 13
52

= 1
4

b) 26
52

= 1
2

c) 39
52

= 3
4

7) a) 5
8

b) 7
8

c) 0
8

= 0

8) a) 5
8

b) 1 c) 3
4

9) a) 1
3

b) 5
17

10) 13C5

52C5

11)
4 ∗13 C5

52C5

12)
12

52
∗ 11

51
∗ 10

50
∗ 9

49
∗ 8

48
=

12C5

52C5

13)
4

52C5

14) a)
6

36
=

1

6
b)

4

36
=

1

9
c)

6

36
=

1

6
d) 1− 6

36
=

5

6

e)
10

36
=

5

18

15)
1

32
16)

5

32
17)

31

32
18)

26

32
=

13

16
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19)
13 ∗4 C2

52C2

=
1

17
≈ 0.0588 20) 1− 13 ∗4 C2

52C2

=
16

17
≈ 0.94

21) 26C2

52C2

≈ 0.245 22)
4 ∗13 C2

52C2

=
4

17
≈ 0.2353

23) 3C2 ∗5 C2

8C4

=
3

7
24) 5C4

8C4

=
1

14
25) 5C3 ∗3 C1

8C4

=
3

7

26) 5C2 ∗3 C2

8C4

+
5C1 ∗3 C3

8C4

=
1

2
27)

3

8
28)

7

8

29)
1

8
30)

1

4
31) 10C6

210
32) 8C3

14C3

≈ 0.154

33) a) 4C2

24C2

b) 1− 20C2

24C2

34) a) 1− 56C3

60C3

≈ 0.19

35) a) 6C2

80C2

≈ 0.0047 b) 1− 74C2

80C2

≈ 0.145 36) a) 22C8

24C8

≈ 0.435

37) a) 1− 99C12

100C12

=
99C11

100C12

b) 98C10

100C12

c) 39C5

40C6

= 0.15

d) 59C5 ∗39 C5

60C6 ∗ 40C6

= 0.015
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38) a) 49C7

50C8

= 0.16 b)
48

50C3

+
48C3

50C5

=
13

1225

39) 12C8 ∗8 C2 +12 C9 ∗ 8 +12 C10

20C10

Section 8.1

1. 27.6
◦ 3. 91.83

◦ 5. 274.3◦

7. 17.416
◦ 9. 183.56◦ 11. 211.78◦

13. 31◦ 25′ 30′′ 15. 6◦ 46′ 48′′ 17. 110◦ 15′

19. 18◦ 54′ 21. 220◦ 25′ 48′′ 23. 70◦ 12′ 50.4′′

25. π
6 27. π

4 29. π
3

31. π
2 33. π

12 35. π
15

37. 45◦ 39. 60◦ 41. 135◦

43. 450◦ 45. 150◦ 47. 180◦

Section 8.2

1. sin θ =12
13 3. sin θ = 8

17 5. sin θ = 6√
52

= 3√
13

cos θ = 5
13 cos θ =15

17 cos θ = 4√
52

= 2√
13

tan θ = 12
5 tan θ = 8

15 tan θ =6
4=3

2
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Section 8.2 (cont.)

7. sin θ = 2√
15

9. sin θ =

√
3
7

cos θ =

√
11
15 cos θ = 2√

7

tan θ = 2√
11

tan θ =
√
3
2

11. sin θ = 1√
5

13. sin θ =

√
11
20 15. cos θ =

√
3
8

cos θ = 2√
5

tan θ =
√
11
3 tan θ = 5√

15

17. sin θ = 7
√
31

40 19. sin θ =
√
3
2 21. cos θ =

√
44
7

tan θ = 7
√
31
9 tan θ =

√
3 tan θ =

√
5
44

Section 8.3

1. Sides: 6, 8, 10 3. Sides: 7, 11.03, 13.06
Angles: 36.9◦, 53.1◦, 90◦ Angles: 32.4◦, 57.6◦, 90◦

5. Sides: 10, 10.72, 14.66 7. Sides: 16, 25.38, 30
Angles: 43◦, 47◦, 90◦ Angles: 32.2◦, 57.8◦, 90◦

9. Sides: 8.47, 33.96, 35 11. Sides:
√

11 ≈ 3.32, 7.11, 7.85
Angles: 14◦, 76◦, 90◦ Angles: 25◦, 65◦, 90◦
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Section 8.4

1. 338.5 feet 3. 33.1◦ 5. 45.5 feet

7. 343.8 feet, 228.6 feet 9. 6.3 feet, 6.7 feet 11. 32.3 mi., N59.8◦W

13. 18 mi. 15. 62.8 miles south, 55.8 miles west

Section 8.5

1. 435.5 feet 3. 3278.9 5. 5807.7 feet

7. 149.3 feet 9. 9.9 mi. 11. 106.3 ft.
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Section 9.1

1. Quadrant I 3. Quadrant IV 5. Quadrant II 7. Quadrant III

9. Quadrant III 11. Quadrant II
Reference Angle: 15◦ Reference Angle: 60◦

13. Quadrant II 15. Quadrant III
Reference Angle: 45◦ Reference Angle: 80◦

17. Quadrant IV 19. Quadrant III
Reference Angle: 45◦ Reference Angle: π3

21. Quadrant II 23. Quadrant IV
Reference Angle: π4 Reference Angle: π6

25. sin θ =3
5 27. sin θ = −3√

13
29. cos θ =−

√
55
8

tan θ =−3
4 cos θ =− 2√

13
tan θ =− 3√

55

31. sin θ = 5√
26

33. sin θ =−1
2 35. sin θ = 1√

2

cos θ = 1√
26

cos θ =−
√
3
2 cos θ = 1√

2

tan θ = 1√
3

tan θ = 1

37. sin θ =−
√
3
2 39. cos θ =−

√
5
3

cos θ = 1
2 tan θ = 2√

5

tan θ =
√

3
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Section 9.2

1. Amplitude=1, Period=π2 3. Amplitude=3, Period =2π
3

0
π
8

π
4

3π
8

π
2

−1

1

0
π
6

π
3

π
2

2π
3

−3

3

5. Amplitude=4, Period=4π 7. Amplitude=1
2 , Period =3π

0
π 2π 3π 4π

−4

4

0
3π
4

3π
2

9π
4

3π

−0.5

0.5

9. Amplitude=4, Period=π3 11. Amplitude=2, Period =4π
3

0
π
12

π
6

π
4

π
3

−4

4

0
π
3

2π
3

π 4π
3

−2

2
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Section 9.2 (cont.)

13. y = cos 3x 15. y = 4 sin1
3x 17. y = −7 cos43x 19. y = 2 cos5π2 x

Section 9.3

1. Amplitude=1, Period=2π 3. Amplitude=2, Period =2π

Vertical Shift=+1 Vertical Shift=−1
2

1
π
2

π 3π
2

2π

0

2

−1
2 π

2
π 3π

2
2π

−2.5

1.5

5. Amplitude=1, Period=8π 7. Amplitude=1
3 , Period =2

Vertical Shift=+1 Vertical Shift=-4

1
2π 4π 6π 8π

0

2

-4
0.5 1 1.5 2

−13
3

−10
3
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Section 9.3 (cont.)

9. Amplitude=5, Period=4π 11. Amplitude=3, Period =2π
Vertical Shift=+1 Vertical Shift=+2

1
π 2π 3π 4π

−4

6

2
π
2

π 3π
2

2π

−1

5

13. Amplitude=4, Period =2π
3 , Vertical Shift=+2

2
π
6

π
3

π
2

2π
3

−2

6

15. y = 2 cos52x+ 1 17. y = −2 sin2
3x+ 7 19. y = 2 sin1

2x+ 10
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Section 9.4

1. D 2. F 3. E 4. B

5. G 6. C 7. H 8. A

9. 11.

−π
6

π
3

5π
6

4π
3

11π
6

−1

1

π
3

5π
6

4π
3

11π
6

7π
3

−1

1

13. 15.

3π
4

5π
4

7π
4

9π
4

11π
4

−1

1

−2π
3
−π

6
π
3

5π
6

4π
3

−1

1
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Section 9.5

1. Amplitude=1, Vertical Shift=0 3. Amplitude=3, Vertical Shift=0
Period=2π, Phase Shift=−π

2 Period =2π, Phase Shift=π2

0−π
2

π
2

π 3π
2

−1

1

0
π
2

π 3π
2

2π 5π
2

−3

3

5. Amplitude=1, Vertical Shift=+3 7. Amplitude=1, Vertical Shift=0
Period=2π, Phase Shift=π4 Period =π, Phase Shift=π2

3
π
4

3π
4

5π
4

7π
4

9π
4

2

4

1
π
2

π 3π
2

2π 5π
2

−1

1

9. Amplitude=2, Vertical Shift=0 11. Amplitude=1
3 , Vertical Shift=0

Period=4π, Phase Shift=−2π Period =π, Phase Shift=−π
8

0−2π −π π 2π

−2

2

0
−π

8
π
8

3π
8

5π
8

7π
8

−1
3

1
3
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Section 9.5 (cont.)

13. Amplitude=2, Vertical Shift=-1 15. Amplitude=3, Vertical Shift=0
Period=π, Phase Shift=π6 Period =π, Phase Shift=−π

6

-1
π
6

5π
12

2π
3

11π
12

7π
6

−3

1

0
−π

6
π
12

π
3

7π
12

5π
6

−3

3

17. Amplitude=1, Vertical Shift=0
Period =4π, Phase Shift=−π

4

0
−π

4
3π
4

7π
4

11π
4

15π
4

−1

1

19. y = 0.5 cosx+ 1 21. y = −1 sinx− 2

23. B 24. E 25. H 26. D

27. A 28. G 29. F 30. C
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Section 9.5 (cont.)

31. Amplitude=2, Vertical Shift=-1 33. Amplitude=1, Vertical Shift=0
Period=π, Phase Shift=−π

4 Period =π, Phase Shift=π8

0
-1
−π

4
π
4

π
2

3π
4

−3

1

0
π
8

3π
8

5π
8

7π
8

9π
8

−1

1

35. Amplitude=3, Vertical Shift=+1 37. Amplitude=1
2 , Vertical Shift=-2

Period=2π, Phase Shift=−π
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Section 10.3

1. x ≈ 41.4◦, 318.6◦ 3. no real solution

5. x ≈ 112.0◦, 248.0◦ 7. x ≈ 12.8◦, 167.2◦

9. x = 0◦, 180◦ ≈ 146.3◦, 326.3◦ 11. x ≈ 70.5◦, 289.5◦

13. x ≈ 68.2◦, 116.6◦, 248.2◦, 296.6◦ 15. x ≈ 140.0◦, 220.0◦

Section 10.4

1. x ≈ 53.6◦, 126.4◦, 187.9◦, 352.1◦ 3. x = 180◦ ≈ 70.5◦, 289.5◦

5. x ≈ 49.4◦, 130.6◦, 190.8◦, 349.2◦ 7. x = 180◦ ≈ 41.4◦, 318.6◦

9. x ≈ 22.5◦, 157.5◦ 11. x = 135◦, 315◦ ≈ 71.6◦, 251.6◦

13. x = 0◦ ≈ 138.6◦, 221.4◦ 15. x ≈ 21.3◦, 147.4◦, 201.3◦, 327.4◦
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Section 11.1

1. ∠A = 25◦,∠B = 30◦,∠C = 125◦ 3. ∠A = 57◦,∠B = 25◦,∠C = 98◦

a ≈ 8.45, b = 10, c ≈ 16.4 a = 1000, b ≈ 503.91, c ≈ 1180.76

5. ∠A = 102◦,∠B = 28◦,∠C = 50◦ 7. ∠A = 50◦,∠B = 103◦,∠C = 27◦

a = 185, b ≈ 88.79, c ≈ 144.88 a = 3, b ≈ 3.82, c ≈ 1.78

9. ∠A = 110◦,∠B = 40◦,∠C = 30◦ 11. ∠A = 23◦,∠B = 110◦,∠C = 47◦

a ≈ 5.64, b ≈ 3.86, c = 3 a ≈ 26.71, b ≈ 64.24, c = 50

13. ∠A = 70◦,∠B = 10◦,∠C = 100◦ 15. ∠A = 82◦,∠B = 65.4◦,∠C = 32.6◦

a ≈ 10.50, b ≈ 1.94, c = 11 a ≈ 39.75, b = 36.5, c ≈ 21.63

17 ∠A = 42◦,∠B = 61◦,∠C = 77◦

a = 12, b ≈ 15.69, c ≈ 17.47

Section 11.2

1. ∠A = 50◦,∠B ≈ 28.6◦,∠C ≈ 101.4◦ 3. ∠A = 43◦,∠B ≈ 59.3◦,∠C ≈ 77.7◦

a = 32, b = 20, c ≈ 40.95 a = 23, b = 29, c ≈ 32.95
∠A = 43◦,∠B ≈ 120.7◦,∠C ≈ 16.3◦

a = 23, b = 29, c ≈ 9.47

5. no real solution 7. ∠A ≈ 59.8◦,∠B = 24◦,∠C ≈ 96.2◦

a = 17, b = 8, c ≈ 19.55
∠A ≈ 120.2◦,∠B = 24◦,∠C ≈ 35.8◦

a = 17, b = 8, c ≈ 11.51

9. ∠A = 108◦,∠B ≈ 33.7◦,∠C ≈ 38.3◦ 11. ∠A = 42◦,∠B ≈ 113.9◦,∠C ≈ 24.1◦

a = 12, b = 7, c ≈ 7.82 a = 18, b ≈ 24.59, c = 11
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Section 11.2 (cont.)

13. no real solution 15. ∠A = 43◦,∠B ≈ 54.5◦,∠C ≈ 82.5◦

a = 31, b = 37, c ≈ 45.07
∠A = 43◦,∠B ≈ 125.5◦,∠C ≈ 11.5◦

a = 31, b = 37, c ≈ 9.06

17. ∠A ≈ 15.3◦,∠B ≈ 32.7◦,∠C = 132◦ 19. ∠A ≈ 59.4◦,∠B = 52◦,∠C ≈ 68.6◦

a ≈ 7.81, b = 16, c = 22 a =≈ 76.46, b = 70, c = 82.7
∠A ≈ 16.6◦,∠B = 52◦,∠C ≈ 111.4◦

a ≈ 25.38, b = 70, c = 82.7

Section 11.3

1. ∠A ≈ 52.5◦,∠B = 30◦,∠C ≈ 97.5◦ 3. ∠A ≈ 47.8◦,∠B ≈ 21.3◦,∠C ≈ 110.9◦

a = 24, b ≈ 15.13, c = 30 a = 122, b = 60, c = 154

5. ∠A = 52◦,∠B ≈ 80.3◦,∠C ≈ 47.7◦ 7. ∠A ≈ 17.8◦,∠B = 135◦,∠C ≈ 27.2◦

a ≈ 28.78, b = 36, c = 27 a = 12, b ≈ 27.81, c = 18

9. ∠A ≈ 50.3◦,∠B ≈ 72.3◦,∠C ≈ 57.4◦ 11. ∠A ≈ 38.7◦,∠B ≈ 53.1◦,∠C ≈ 88.2◦

a = 21, b = 26, c = 23 a = 25, b = 32, c = 40

13. ∠A = 77.4◦,∠B ≈ 55.9◦,∠C ≈ 46.7◦ 15. ∠A ≈ 57.4◦,∠B ≈ 46.1◦,∠C ≈ 76.5◦

a ≈ 523.15, b = 444, c = 390 a = 112.7, b = 96.5, c = 130.2

Section 11.4

1. 23.2 miles 3. 262.9 miles, N43.5◦E

5. 802.9 miles 7. 32.9 miles

9. 3547.1 feet


